{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# ファイルの読み書き\n", "\n", "## 絶対パスと相対パス\n", "\n", "一般的なファイル構造\n", "\n", "Mac/Linuxの場合\n", "\n", "\n", "\n", "Winodowsの場合\n", "\n", "\n", "\n", "### 絶対パス(absolute path)\n", "- ルートからの道順(パス)を指定する方法\n", "- 厳密なルートで間違いが少ない\n", "- 長くなりがち\n", "\n", "* Windowsの例\n", " * C:¥Users¥username¥Desktop¥Folder1¥test.txt\n", "* Mac/Linuxの例\n", " * /Users/username/folder1/test.txt\n", "\n", "### 相対パス(relative path)\n", "- 基準となるディレクトリ(カレントディレクトリ)からの道順(パス)を指定する方法\n", "\n", "`..` で1階層上のディレクトリ、`.`で同じディレクトリ\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "現在の場所(カレントディレクトリ)は、`%pwd`で確認できます。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "%pwd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "現在の場所(カレントディレクトリ)にあるファイルをリストアップするためには`%ls`で確認できます。" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%ls" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## pandasを用いたcsvの読み書き" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
pricenumdatetime
0100.052018-06-01 00:00:00
140.022018-06-27 03:00:00
2300.012018-07-23 06:00:00
3NaN02018-08-18 09:00:00
4500.042018-09-13 12:00:00
51000.02002018-10-09 15:00:00
6300.072018-11-04 18:00:00
7400.0192018-11-30 21:00:00
8240.0202018-12-27 00:00:00
93000.01002019-01-22 03:00:00
\n", "
" ], "text/plain": [ " price num datetime\n", "0 100.0 5 2018-06-01 00:00:00\n", "1 40.0 2 2018-06-27 03:00:00\n", "2 300.0 1 2018-07-23 06:00:00\n", "3 NaN 0 2018-08-18 09:00:00\n", "4 500.0 4 2018-09-13 12:00:00\n", "5 1000.0 200 2018-10-09 15:00:00\n", "6 300.0 7 2018-11-04 18:00:00\n", "7 400.0 19 2018-11-30 21:00:00\n", "8 240.0 20 2018-12-27 00:00:00\n", "9 3000.0 100 2019-01-22 03:00:00" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "\n", "price = [100, 40, 300, np.nan , 500, 1000, 300, 400, 240, 3000]\n", "num = [5, 2, 1, 0, 4, 200, 7, 19, 20, 100]\n", "datetimes = pd.date_range('20180601', periods=10, freq= '627H')\n", "\n", "df = pd.DataFrame({'price':price, 'num': num, 'datetime': datetimes })\n", "df" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "df.to_csv('./testcsv.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "ちゃんと保存されているか、確認してみましょう。" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%ls " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### pandasを用いたcsvの読み込み" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "保存したcsvファイルをDataFrameとして読み込む" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
pricenumdatetime
0100.052018-06-01 00:00:00
140.022018-06-27 03:00:00
2300.012018-07-23 06:00:00
3NaN02018-08-18 09:00:00
4500.042018-09-13 12:00:00
51000.02002018-10-09 15:00:00
6300.072018-11-04 18:00:00
7400.0192018-11-30 21:00:00
8240.0202018-12-27 00:00:00
93000.01002019-01-22 03:00:00
\n", "
" ], "text/plain": [ " price num datetime\n", "0 100.0 5 2018-06-01 00:00:00\n", "1 40.0 2 2018-06-27 03:00:00\n", "2 300.0 1 2018-07-23 06:00:00\n", "3 NaN 0 2018-08-18 09:00:00\n", "4 500.0 4 2018-09-13 12:00:00\n", "5 1000.0 200 2018-10-09 15:00:00\n", "6 300.0 7 2018-11-04 18:00:00\n", "7 400.0 19 2018-11-30 21:00:00\n", "8 240.0 20 2018-12-27 00:00:00\n", "9 3000.0 100 2019-01-22 03:00:00" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "r_df = pd.read_csv('testcsv.csv', index_col = 0)\n", "r_df" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### 参考 pandasを用いた様々なファイル形式の読み書き" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`pandas`を用いたcsvの読み書きは以前紹介しましたが、その他の形式のファイルの読み書きもpandasでは行えます。\n", "\n", "いくつか代表的なものを紹介します。" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "> `read_csv`: 区切り文字で区切られたデータを読み込む
\n", "> `read_excel`: ExcelのXLSやXLSXファイルからデータを読み込む
\n", "> `read_json`: JSON(JavaScript Object Notation)の文字列表現からデータを読み込む
\n", "> `read_pickle`: Pythonのpickleバイナリ形式で書き出されたオブジェクトを読み込む
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 250 entries, 0 to 249\n", "Data columns (total 7 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Date 250 non-null object \n", " 1 GOOG 250 non-null float64\n", " 2 AAPL 250 non-null float64\n", " 3 META 250 non-null float64\n", " 4 AMZN 250 non-null float64\n", " 5 NFLX 250 non-null float64\n", " 6 TSLA 250 non-null float64\n", "dtypes: float64(6), object(1)\n", "memory usage: 13.8+ KB\n" ] } ], "source": [ "r_df = pd.read_csv('testcsv.csv', index_col = 0)\n", "r_df.info()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "r_df.to_pickle('./test.pkl')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "DatetimeIndex: 250 entries, 2022-04-04 to 2023-03-31\n", "Data columns (total 6 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 GOOG 250 non-null float64\n", " 1 AAPL 250 non-null float64\n", " 2 META 250 non-null float64\n", " 3 AMZN 250 non-null float64\n", " 4 NFLX 250 non-null float64\n", " 5 TSLA 250 non-null float64\n", "dtypes: float64(6)\n", "memory usage: 13.7 KB\n" ] } ], "source": [ "r_df_pkl = pd.read_pickle('./test.pkl')\n", "r_df_pkl.info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## pickleの読み書き" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pickle\n", "new_list = [1, 2, 3, 4, 5, 10, 12, 4, 14]\n", "\n", "with open('./new_list.pkl','wb') as f:\n", " pickle.dump(new_list, f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "with open('./new_list.pkl','rb') as f:\n", " new_list_2 = pickle.load(f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "list" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "type(new_list_2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[1, 2, 3, 4, 5, 10, 12, 4, 14]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "new_list_2" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }