{ "cells": [ { "cell_type": "markdown", "id": "26ec93c9-8072-497a-bd5d-ed54e5e2fd6d", "metadata": {}, "source": [ "# 教師なし学習\n", "\n", "## クラスタリング\n", "### K-means" ] }, { "cell_type": "markdown", "id": "acbaddaf-1427-439f-899d-80d32c0c6c01", "metadata": {}, "source": [ "irisの特徴量`petal_length`と`petal_width`を用いて、クラスタリング手法の一つであるK-meansを使ってクラスタリングします\n", "\n", "K-meansではクラスタの数を指定する必要があります。ここでは3つのクラスタを生成します。" ] }, { "cell_type": "code", "execution_count": 1, "id": "3e536482-3d6d-42a4-955a-3690dc3959dd", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "from sklearn import datasets\n", "from sklearn.cluster import KMeans\n", "from sklearn.decomposition import PCA\n", "from sklearn.preprocessing import StandardScaler\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "id": "08abe37e-eef7-4fc8-aa65-086a94132258", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)species
05.13.51.40.20
14.93.01.40.20
24.73.21.30.20
34.63.11.50.20
45.03.61.40.20
\n", "
" ], "text/plain": [ " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", "0 5.1 3.5 1.4 0.2 \n", "1 4.9 3.0 1.4 0.2 \n", "2 4.7 3.2 1.3 0.2 \n", "3 4.6 3.1 1.5 0.2 \n", "4 5.0 3.6 1.4 0.2 \n", "\n", " species \n", "0 0 \n", "1 0 \n", "2 0 \n", "3 0 \n", "4 0 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = datasets.load_iris()\n", "df = pd.DataFrame(data.data, columns=data.feature_names).reset_index(drop=True)\n", "target = pd.DataFrame(data.target, columns = ['species']).reset_index(drop=True)\n", "df = df.merge(target, left_index=True, right_index=True, )\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 3, "id": "9cd156d1-60e7-4d72-af8d-0618c9312fef", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/yuyashibu/anaconda3/envs/iiimethodsiv/lib/python3.8/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n", " warnings.warn(\n" ] } ], "source": [ "X_iris=df[['petal length (cm)', 'petal width (cm)']]\n", "\n", "model = KMeans(n_clusters=3) # k-meansモデル、n_clustersでクラスタの数を指定\n", "model.fit(X_iris) # モデルをデータに適合\n", "y_km=model.predict(X_iris) # クラスタを予測" ] }, { "cell_type": "code", "execution_count": 4, "id": "78c2bc88-5c84-4aec-948d-3879f8e5999f", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHFCAYAAADYPwJEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIXElEQVR4nO3dd3xT1fvA8c9N0qaDtmxapBREZG8QClJAlixBVHAxXfxEZYgDFzhxoYgKiiIVkaEWBGUWgYJaVKAgX0SGgFRsQVZLW7qS8/sjbWjoSpqkCeV5v173ZXNz7r3PLd9v8vScc8+jKaUUQgghhBBeROfpAIQQQgghLicJihBCCCG8jiQoQgghhPA6kqAIIYQQwutIgiKEEEIIryMJihBCCCG8jiQoQgghhPA6kqAIIYQQwutIgiKEEEIIryMJiqhwoqOj0TSNHTt22Ow/ffo07du3p1KlSsTGxnoouitX9+7d6d69u9vOP2fOHKKjo912fk3TmD59utvOL4RwLYOnAxCiPPzzzz/07t2bkydPsnHjRjp16uTpkMRl5syZQ/Xq1Rk9erRbzh8fH0+dOnXccm4hhOtJgiIqvEOHDtGrVy9ycnKIi4ujRYsWng5JlBOlFJmZmfj7+0tSKsQVRoZ4RIW2e/dubrzxRgwGAz/++GOpycmWLVvQNI3Fixfz1FNPERYWRqVKlRg0aBAnT57kwoULPPjgg1SvXp3q1aszZswY0tLSbM6hlGLOnDm0bt0af39/qlSpwu23386RI0ds2sXGxjJ48GDq1KmDn58f1113HQ899BCnT5+2aTd9+nQ0TWPfvn3cddddhISEUKtWLcaOHUtKSopN26+//pqOHTsSEhJCQEAA1157LWPHji3192Q2m3n//fetMVeuXJlOnTqxatWqUn9XW7Zssdl/7NgxNE2zGa45cuQId955J7Vr18ZoNFKrVi169uzJ7t27AahXrx779u0jLi4OTdPQNI169epZj09NTWXKlCnUr18fX19frrnmGiZOnEh6errNtTVN45FHHuGjjz6iSZMmGI1GPv/8c+t7BYd48ocCN2/ezP/93/9RvXp1qlWrxtChQ/n3339tzpuVlcXjjz9OaGgoAQEBREVFsXPnTurVq+e2Hh8hrnbSgyIqrB9//JHp06cTHh7Ohg0bCAsLs/vYZ555hh49ehAdHc2xY8eYMmUKd911FwaDgVatWrFkyRISEhJ45plnCAoKYvbs2dZjH3roIaKjo3nsscd44403OHv2LC+99BKdO3dmz5491KpVC4C//vqLyMhI7r//fkJCQjh27BjvvPMON954I3v37sXHx8cmpttuu43hw4dz3333sXfvXqZOnQrAZ599BliGMIYPH87w4cOZPn06fn5+/P3332zatKnU+x09ejSLFi3ivvvu46WXXsLX15ddu3Zx7Ngxu39nJenfvz8mk4k333yTunXrcvr0aX7++WfOnz8PwIoVK7j99tsJCQlhzpw5ABiNRgAyMjLo1q0b//zzD8888wwtW7Zk3759vPDCC+zdu5eNGzeiaZr1Wt9++y3btm3jhRdeIDQ0lJo1a5YY2/3338+AAQNYvHgxiYmJPPHEE9x77702v7cxY8awbNkynnzySW666Sb++OMPbr31VlJTU13y+xFCFEEJUcEsWLBAAQpQISEh6tSpU3Yfu3nzZgWoQYMG2eyfOHGiAtRjjz1ms3/IkCGqatWq1tfx8fEKUDNnzrRpl5iYqPz9/dWTTz5Z5HXNZrPKyclRf//9twLUypUrre9NmzZNAerNN9+0Oebhhx9Wfn5+ymw2K6WUevvttxWgzp8/b/f9KqXU1q1bFaCeffbZEtt169ZNdevWzfo6/3e1efNmm3ZHjx5VgFqwYIFSSqnTp08rQM2aNavE8zdr1szm/PlmzJihdDqd+u2332z2f/PNNwpQa9asse7L/zc/e/ZsofMAatq0adbX+f87efjhh23avfnmmwpQSUlJSiml9u3bpwD11FNP2bRbsmSJAtSoUaNKvC8hRNnIEI+osG655RZSUlKYOHEiJpPJ5r3c3FybTSll8/7AgQNtXjdp0gSAAQMGFNp/9uxZ6zDP999/j6Zp3HvvvTbnDw0NpVWrVjbDIadOnWLcuHGEh4djMBjw8fEhIiICgP379xd5PwW1bNmSzMxMTp06BUCHDh0AGDZsGF999RUnTpyw6/e0du1aAMaPH29Xe0dVrVqVBg0a8NZbb/HOO++QkJCA2Wy2+/jvv/+e5s2b07p1a5vfad++fYscYrrpppuoUqWK3ecv6vcK8PfffwMQFxcHWH6vBd1+++0YDNIJLYS7SIIiKqznn3+eF154gcWLF3PvvffaJCk+Pj42W/48hXxVq1a1ee3r61vi/szMTABOnjyJUopatWoVusb27dut80vMZjN9+vRh+fLlPPnkk/zwww/8+uuvbN++HYCLFy8Wup9q1arZvM4fAslvGxUVxbfffktubi4jR46kTp06NG/enCVLlpT4e/rvv//Q6/WEhoaW2K6sNE3jhx9+oG/fvrz55pu0bduWGjVq8Nhjj3HhwoVSjz958iS///57od9nUFAQSqlCc3YcGcqD0n+vZ86cAbAOzeUzGAyFjhVCuI6k/6JCe/HFF9E0jRdffBGz2cyXX36JwWDgt99+s2lXv359l1yvevXqaJrGtm3brF90BeXv+9///seePXuIjo5m1KhR1vcPHz7s1PUHDx7M4MGDycrKYvv27cyYMYO7776bevXqERkZWeQxNWrUwGQykZyc7NCXu5+fH2CZQFrQ5QkDQEREBPPnzwfg4MGDfPXVV0yfPp3s7Gw++uijEq9TvXp1/P39rXNtinq/oILzUVwhPwk5efIk11xzjXV/bm6uNXkRQrieJCiiwps+fTo6nY5p06ahlGLx4sW0b9/eLdcaOHAgr7/+OidOnCg0JFBQ/pfo5UnMxx9/7JI4jEYj3bp1o3Llyqxfv56EhIRiE5R+/foxY8YM5s6dy0svvWT3NfKfsvn999/p27evdX9JT/4AXH/99Tz33HPExMSwa9cum5iL6jkaOHAgr732GtWqVXNZIumIqKgoAJYtW0bbtm2t+7/55htyc3PLPR4hrhaSoIirwgsvvIBOp+P5559HKcWSJUvcMn+gS5cuPPjgg4wZM4YdO3YQFRVFYGAgSUlJ1sec/+///o/GjRvToEEDnn76aZRSVK1ale+++86pFW5feOEF/vnnH3r27EmdOnU4f/487733Hj4+PnTr1q3Y47p27cqIESN45ZVXOHnyJAMHDsRoNJKQkEBAQACPPvpokceFhobSq1cvZsyYQZUqVYiIiOCHH35g+fLlNu1+//13HnnkEe644w4aNmyIr68vmzZt4vfff+fpp5+2tmvRogVLly5l2bJlXHvttfj5+dGiRQsmTpxITEwMUVFRTJo0iZYtW2I2mzl+/DgbNmzg8ccfp2PHjmX+vZWmWbNm3HXXXcycORO9Xs9NN93Evn37mDlzJiEhIeh0MlIuhDtIgiKuGs899xw6nY5nn30Ws9nM0qVLCz3K6woff/wxnTp14uOPP2bOnDmYzWZq165Nly5duOGGGwDLHJjvvvuOCRMm8NBDD2EwGOjVqxcbN26kbt26Zbpux44d2bFjB0899RT//fcflStXpn379mzatIlmzZqVeGx0dDRt27Zl/vz5REdH4+/vT9OmTXnmmWdKPO6LL77g0Ucf5amnnsJkMjFo0CCWLFli00MVGhpKgwYNmDNnDomJiWiaxrXXXsvMmTNtkp8XX3yRpKQkHnjgAS5cuEBERATHjh0jMDCQbdu28frrrzNv3jyOHj2Kv78/devWpVevXjbrpbjLggULCAsLY/78+bz77ru0bt2ar776iptvvpnKlSu7/fpCXI00dfnjC0IIIUr1888/06VLF7788kvuvvtuT4cjRIUjCYoQQpQiNjaW+Ph42rVrh7+/P3v27OH1118nJCSE33//3TphWAjhOjLEI4QQpQgODmbDhg3MmjWLCxcuUL16devkYklOhHAP6UERQgghhNeR6edCCCHEVWjGjBl06NCBoKAgatasyZAhQzhw4ECpx8XFxdGuXTv8/Py49tpri1zLKCYmhqZNm2I0GmnatCkrVqxwOD5JUIQQQoirUFxcHOPHj2f79u3ExsaSm5tLnz59ClUJL+jo0aP079+frl27WgumPvbYY8TExFjb5BcuHTFiBHv27GHEiBEMGzaMX375xaH4ZIhHCCGEEPz333/UrFmTuLg46wKFl3vqqadYtWqVTb2wcePGsWfPHuLj4wEYPnw4qamp1jpfADfffDNVqlQptfRGQVfdJFmz2cy///5LUFCQy5fEFkIIUbEopbhw4QK1a9d266J8mZmZZGdnO30epVSh7zaj0Vhk6Y3LpaSkAIVrjhUUHx9Pnz59bPb17duX+fPnk5OTg4+PD/Hx8UyaNKlQm1mzZtl5FxZXXYLy77//Eh4e7ukwhBBCXEESExOpU6eOW86dmZlJ/YhKJJ8yld64FJUqVbJWV883bdo0pk+fXuJxSikmT57MjTfeSPPmzYttl5ycXKhwZq1atcjNzeX06dOEhYUV2yY5Odmhe7nqEpSgoCDA8j+24OBgD0cjhBDCm6WmphIeHm797nCH7Oxskk+Z+HtnPYKDyt5Lk3rBTES7Y4W+3+zpPXnkkUf4/fff+fHHH0tte3kPTf5MkYL7i2rj6KjFVZeg5P+CgoODJUERQghhl/KYElApSKNSUNmvY6Zs32+PPvooq1atYuvWraX2EoWGhhbqCTl16hQGg8Fa+bu4Npf3qpRGnuIRQgghvIBJmZ3eHKGU4pFHHmH58uVs2rTJrmrhkZGRhYqabtiwgfbt21trmxXXpnPnzg7Fd9X1oAghhBDeyIzCTNkfrHX02PHjx7N48WJWrlxJUFCQtdcjJCQEf39/AKZOncqJEydYuHAhYHli54MPPmDy5Mk88MADxMfHM3/+fJuncyZMmEBUVBRvvPEGgwcPZuXKlWzcuNGu4aOCpAdFCCGEuArNnTuXlJQUunfvTlhYmHVbtmyZtU1SUhLHjx+3vq5fvz5r1qxhy5YttG7dmpdffpnZs2dz2223Wdt07tyZpUuXsmDBAlq2bEl0dDTLli2jY8eODsV31a2DkpqaSkhICCkpKTIHRQghRInK4zsj/xr/Hqjj9CTZ2o3+qTDfbzLEI4QQQngBk1KYnOgzcOZYbyRDPEIIIYTwOtKDIoQQQniB8p4k6+0kQRFCCCG8gBmFSRIUKxniEUIIIYTXkR4UIYS4AiilIGs9Kn0R5O4HzQh+fdECRqIZSl9gy+ZcOQdRGZ9D5g9ADvi0QAsYhTI0gIxFkLkaVCYYrkMLuBf8+qNpevfcmLCSIR5bHu1BmTFjBh06dCAoKIiaNWsyZMgQDhw4UOIxW7ZsQdO0Qtuff/5ZTlELIUT5UsqMSnkadf4xyNkB6gKYT0PGUtTpQaisn+w/V2Ys6swQuLgc1FnLubJ/QZ1/CE7fDBlfgPk/y/6cPaiUx1HnJ6KU84XsRMnyn+JxZqtIPJqgxMXFMX78eLZv305sbCy5ubn06dOH9PT0Uo89cOAASUlJ1q1hw4blELEQQnjAxW8gc0Xei4LLmZuAHNT5R1DmtCIOtKVMp1HnJ+UdVzDhyP8597L9edfK2gAZC8sWuxBl5NEhnnXr1tm8XrBgATVr1mTnzp1ERUWVeGzNmjWpXLmyG6MTQgjvoNIXABoU2YWvQGVA5ioIuLvkE138GksS4uhf2gqVHg0Bo9A0mbroLmZs08+yHF+ReNX/0lJSUgCoWrVqqW3btGlDWFgYPXv2ZPPmzcW2y8rKIjU11WYTQogrhVIXwfQXJScVOlR2Qunnyt5Nmb/GzElgPlu2Y4VdTHlP8TizVSRek6AopZg8eTI33ngjzZs3L7ZdWFgY8+bNIyYmhuXLl9OoUSN69uzJ1q1bi2w/Y8YMQkJCrFt4eLi7bkEIIdzAzo9pzY4OcU2PpSemjGSirFuZlPNbReI1T/E88sgj/P7776VWO2zUqBGNGjWyvo6MjCQxMZG33367yGGhqVOnMnnyZOvr1NRUSVKEEFcMTTOifNpAzh6K7/0wofmWXspeM3ZBZW0sSxRgaAha5TIcK0TZeEUPyqOPPsqqVavYvHkzderUcfj4Tp06cejQoSLfMxqNBAcH22xCCHEl0QIfpPjkRA+6WuDXt/QT+Q0GLQTHP/oVWuCDaJoTvS+iVGYXbBWJRxMUpRSPPPIIy5cvZ9OmTdSv79iz/PkSEhIICwtzcXRCCOEdNL+eaJUez3uVP8yiWTZdZbQqn6FpvqWfR1cJrepnoFXCdqgn75xa/h9wmu3+wP8Dv0HO3IKwgxkNkxOb2ZnhOy/k0SGe8ePHs3jxYlauXElQUBDJyckAhISE4O/vD1iGaE6cOMHChZZH3GbNmkW9evVo1qwZ2dnZLFq0iJiYGGJiYjx2H0II4W5apYfA2B11cQnk/AGaH5qxN/gPQdMF2X8enxZQYyNcXI7K2gQqG3xaowXcaemJyfwOlbkOVDoYGqEF3IXm08yNdyZE0TyaoMydOxeA7t272+xfsGABo0ePBiApKYnjx49b38vOzmbKlCmcOHECf39/mjVrxurVq+nfv395hS2EEB6h+TRC85nu/Hl0lSFwLFrg2MJvBtxpSVZEuTMry+bM8RWJplQFW3quFKmpqYSEhJCSkiLzUYQQQpSoPL4z8q/xy75QKgWVfeZF2gUzHZslV5jvN6+YJCuEEEIIUZDXPGYshBBCXM3yJ7s6c3xFIgmKEEIUQeX8aVnePWszYAKfVmiBI9GM3dx6XbM5A1JftlQUJhPQgU8LCHoenW9Lt15beJZZaZhV2ZMMZ471RjLEI4QQl1GZay0VfzNXgjoHKhWyf0adewDzhbfcdl2zOQ3+6waZMViSEwCzZZG2s7djvvi9264thLeRBEUIIQpQpmTU+cex1L4pouJv+ieozE3uufi5B0GlFP9+yhTM5mz3XFt4nDNroDg7POSNJEERQogCVMYyLGtyFveAox6VEe3y65rN6ZCzs7RWkD7X5dcW3sGEzumtIqlYdyOEEM7KSaDkRcNNkL3b9dfN3kHJFYvz2/3s+msLr6Dy5qCUdVMyB0UIISoyOyr2uqOqr+ZjZ0OpKCyuDpKgCCFEAZrxRihxLF8Pvl1cf2GfG7DrI9mvn+uvLbyCzEGxJQmKEEIU5D80r5hecR+P5qKXiHeSTmcAY2kVif3A/x6XX1t4B5PSOb1VJBXrboQQwkmaLgStyqegBVC44q+GFvwymm9b91w85F3QX1/MmwaougidTj62xdVBFmoTQojLaL5tLlX8zdwC5ORV/L0LzVDPbdfV6XRQ43vM6csg/RMwnwbNCH69IOgJdLrKbru28DwzGmYn+g3M9kyyvoJIgiKEEEXQdFUh8H60wPvL/dq6wOEQOLzcrys8S5a6tyV9hUIIIYTwOtKDIoQQQngBZye6mpQM8QghhBDCxSxzUJwoFljBhngkQRFCiCIUV80YfX1UxueQuQ5UJhiuRwu4F+XTFi4ugYsrQV0AfQRawF0oYw+0izGoi9+A+SzoaqEFDAf/O9B0gfbHoxRkrUelL4Lc/XmTZ/uiBYxEM9Qv+pjs3ZZ7yP4ZUOB7A1rgaDTfDkW3z01EZXxhqaSsMsFwHVrAveDXH80di9O5gco9jEpfCFmxoLLBpxlawAgw9kLTKtYXeEWnKVXB+oRKkZqaSkhICCkpKQQHB3s6HCGEF1KZa1HnJ2F5zDi/YKA+7+f8L+r8/TosS+Mb8vblf6RqeT/7ArlcWj4/70vS0BCt6iI0O57MUcqMSpkKmSsKXC8/Jj1alY/RjLaLx6mMJajU6Xntbe9BC3oKLfA+2/bZu1Dnxli+1C+/N2NftMqzvD5JUZmbUefHY1voMe/fzf9OtOAXHU5SyuM7I/8aX+9pTEBQ2X/HGRdM3NHqzwrz/SaTZIUQooBSqxljumx/frKQi20tnfyfs7Gt7aMsW+5fqNSX7Avq4jd5yUnB6+XHkoM6/wjKnHbpCjkH8pKTou9BXXgDVaCekFJZqHP/Byqr6HvL2gAZC+2L1UOU+Rzq/GMU/vfJ+/niUsj8zgOR2c8TC7Vt3bqVQYMGUbt2bTRN49tvvy2x/ejRo9E0rdDWrFkza5vo6Ogi22RmZjoUmyQoQghRQOnVjF3FBJlrUKb/So8pfQHFL7+vQGVA5qpLezIWU/LHu94ylJMvcy2ocxRfJFGh0qNRqqQiih52cTmWZLC4fzcdKv3zcgzIcWZ0Tm+OSk9Pp1WrVnzwwQd2tX/vvfdISkqybomJiVStWpU77rjDpl1wcLBNu6SkJPz8/ByKTeagCCFEQaVWM3YlM+T8D/Q9im2h1EUw/VXKeXSo7AS0gLstL3N2YNuLcDkTZP926Ro5u7F8HeSWEGqSZQ6NvnopsXiGyt5TSgsz5O5FKZPXD1WVp379+tGvn/31nUJCQggJCbG+/vbbbzl37hxjxoyxaadpGqGhoU7FJj0oQghho5y/vLTS/k6082Pa5jz2VGR2sD24p4qzq2g6Si7yCJbfpfdOlDUpzekNLHNaCm5ZWVlui3n+/Pn06tWLiIgIm/1paWlERERQp04dBg4cSEJCgsPnlgRFCCEKKL2asSsZwad1iS00zQg+bSj549qE5tu5wGmjSmmvB2O3S9fw7UKJvSdoYLgetMolxupJlnsoqedLD76d0DTv/dozoXN6AwgPD7f2dISEhDBjxgy3xJuUlMTatWu5/37b1ZYbN25MdHQ0q1atYsmSJfj5+dGlSxcOHTrk0PlliEcIIQryHwppH4BKx71DPRoE3IWmCyq9ZeCDqPP/V8y7etBVB79LlZC1gLssjxeTQ+E5GRqgWR4fzmfsBvoIMP1D0UNDCi3wQe9+TNd/IKTNBHMKRd+DySNlCzwhMTHR5ikeo9HolutER0dTuXJlhgwZYrO/U6dOdOrUyfq6S5cutG3blvfff5/Zs2fbfX7vTSWFEMIDSq5mDGhB5H/J2+6vkvdad9n+akXvN3ZHC5piX0x+PdEqPW57fH4MuspoVT5D03wvtddfg1ZlDpZHnAt+zOsAPVrld9EMDS611/SWe9bVKHDuAtcK/D/wG2RXrJ6iaf5oVT4r8O+TL68KddCzeb1j3susdE5vYJmgWnBzR4KilOKzzz5jxIgR+Pr6lthWp9PRoUMH6UERQghnlVTNGF11yFyFytxgeXrG0MSy8JqhAWSuRV38HlQK6OuhBQxHGVqhZW9GXVwB5v9AVxst4A7w7eLQcINW6SEwdkddXAI5f4Dmh2bsDf5DiuyF0YxReffwFSorf6G2jmgBw9H0tQu3N0RA9bWQ+R0qc52lB8nQyFLB2adZofbeSPNpCjVi4eIKVNYPlsemfVrkVaG+ztPhlargME3Zji+/Zc3i4uI4fPgw9913X6ltlVLs3r2bFi1aOHQNWahNCCGEKEZ5LtT2ya52Ti/U9kDbnQ7FmpaWxuHDhwFo06YN77zzDj169KBq1arUrVuXqVOncuLECRYutF0HZ8SIERw6dIjt27cXOueLL75Ip06daNiwIampqcyePZsvvviCn376iRtuuMHu+5EeFCGEEMILmMH6JE5Zj3fUjh076NHj0mPukydPBmDUqFFER0eTlJTE8ePHbY5JSUkhJiaG9957r8hznj9/ngcffJDk5GRCQkJo06YNW7dudSg5AelB8XQ4QgghvFh59qDM3dUB/0pl7ze4mJbL/7X9rcJ8v8kkWSGEEEJ4HRniEUIIL6JUDlxchcr4EkzHQKsE/oPQAkag6YtemVNl/WhZxj0ngfw1TrTA0ZZJo1c4lRVvqR6dvQPLvXVFCxyF5uPYhMsrQVnr6RQ8viKRBEUIIbyEUtmocw9B9k9YKwmrNEifj8pYClW/KJR0mC/MgvQ5XKq2TN6TOKsg5C00f+9+PLgkKu1DVNp72N7balTmdxA8Ay1gqCfDczkzGmYnFgl05lhvVLHSLSGEuIKptLmQHZ/3quCURzOoDNS5h1Hq0iJkKmtbXnIChSv4mlEpT6Jy/3Fv0G6isrbnJSdQ+N4UKvUZVO6x8g/MjTxRzdibVay7EUKIK5RS2ZCxiOKfxTCB+V/I2nrpmPTPKa2Ojrq4zGUxlieVsZCS701DZSwpr3CEB0iCIoQQ3sD0j2WBtxIZUDkFiq7lJFB61eIdLgjOA7J3UmHvrRiuqsVTUcgcFCGE8Ar2LNClLmtnxxdSqdWSvZSmL1xGqFCbK/TeimFWGmZn1kFx4lhvVLHSLSGEuFLpw0EXVkojE5rx8qrFJQ+DaL5dXRCcB/iWdm86NOMVem/CLpKgCCGEF9A0HVrgAyW00IOhGfi0v3RM4CiKn7OiA80fAm53ZZjlxnJvxXWhaIAR/IeVY0TuZ3ZyeMdcwb7SK9bdCCHElSzgHvC/N+9Ffu9B3se0vg5alblo2qVufM2nJVrIDPKrFF+iWYoJVvkETVfV/XG7gebTBC3kbSz3dXlFZj+0Kh+j6Wt6Jjg3cVU144qiYg3gCSHEFUzTNLSQF1D+g1AZy8D0F2jBaP4DwK8/muZX+Bj/oeDTHnVxad7EUoOlkrH/7Wj6auV/Ey6k+Q8En1Z592ZZqE0zdgX/O9D01T0dnnAzSVCEEMLLaL5t0Hzb2N/eUBct6Ek3RuQ5miEcLegJT4dRLkxomJxYbM2ZY72RJChCCCGEF3B2mKaiDfFUrLsRQgghRIUgPShCCCGEFzDh3DBNScvaXYkkQRFCCDdS5hTIWIK6+A2Yz4KuFlrAcJTfILTM1Zal6E1JoKuC5n8byv8OtKythaoZ438vWu4eVPoiyN0PmhH8+qIFjEQz1C/62tm7UenRkP0zoMD3BkuVY98O5fkrKJVSCrJiUelfQO4foPmCsQ9a4Eg0QwNPh1duZIjHlqaUKm2tvgolNTWVkJAQUlJSCA4O9nQ4QogKTJmSUWfuAnMSl9Yryf8L2RfIynutCrznA2RjrWYMXHqMOOey/XpAb3nk1tjF9toZS1Cp0/Pamwq0N6EFPYUWeJ+L7tI5SilU6vNw8SsK35vO8mi1Mcpj8ZXHd0b+NabG34xfJZ8ynyczLYcZkesqzPdbxUq3hBDCi6jzU8CcjO1iaipvyyrwuuB72Xk/X1bNmJwi9puAHNT5R1DmtEtnyTmQl5woClcCBnXhDVT2bofvxy0yv81LTqDwveWizj1i6YUSVx1JUIQQwg1U7mHI+RX3zwxQoDIgc9WlPRmLKfnjXY/K+MLNcdlHpUdTfKx5idzFFeUXkAcpNMxObKqCPWYsCYoQQrhD9p5yvJgOlV2wyvEOSq8E/Ju7gyqVUrmW+TTFLtcPoNlWcK7ATErn9FaRVKy7EUIIb6GV88erTWVfOyoje0UlYA3s+qvfG2IV5U0SFCGEcAffTtj35esKJjTfy6sclzzEg7Gbu4MqlabpwbcjJSdUZtt7q8DMSnN6q0gkQRFCCDfQ9GHg1w/3f8zqQVcL/PpeunbAXVh6HYr6wrL0WmgB9xbxXvnTAu+n+OEoPeiqg/+A8gzJY5ypZJy/VSQV626EEMKLaMGvgE+rvFf5H7d5vQVaddvX+e9r1YrZX/my/XnDI7rKaFU+Q9N8L11Xfw1alTlYHmW+vBKwHq3yu16zvohmjEILejrv1eUVmYPRqswvskiiqPhkYE8IIdxE01WCql9C1ibUxRVg/g90tdEC7kD5dEbL2Y7K+BrM/4CuOpr/rWC8CXL+V2Q1Y3L/Rl1cAjl/gOaHZuwN/kPQdEGFr22Mghob4eJXqKz8hdo6ogUMR9PXLv9fRgm0wLHg2zXv3v6Xd2+98u7tyl/Pw17ODtNUtCEeSVCEEMKNNM0Afn3Q/PrY7gcwdim0wBoAxVUz9mmE5jPd/mvra0GlR9EqPepQzJ6g+TRE83nB02F4lBkdZicGNpw51htVrLsRQgghRIUgPShCCCGEFzApDZMTwzTOHOuNJEERQgghvIDMQbElCYoQosJTSkH2VlT6QsjZg2UdkB5ogaNBpedV/P3F0ti3o2W/FmjZn7UZMIFPK7TAkaCvj8r4HDLXgcoEw/WWR3b9+qGV9+JsXkqpTLgYg8pYCqYToIWgBQyFgHvQdFUdO1dWvOX3nb0Dy79bV7TAUWg+LdwTvAcpJ6sZK1lJ1nVmzJhBhw4dCAoKombNmgwZMoQDBw6UelxcXBzt2rXDz8+Pa6+9lo8++qgcohVCXImUUqi0t1DnHoDsn0GlgjoHmStRZwajzt4FWRtBnbdsWRtRZ+9CnRkMmSstbVUqZP+MOvcA6nRfyFhseSJHXYCcBFTKJFTK4yhV0pLtVwdlTkOduQeV+hLkHgSVBuYTqLQPUacHoXKP23+utA9R50ZBVlyBf7fVqDO3ozKWu/EuhDfwaIISFxfH+PHj2b59O7GxseTm5tKnTx/S09OLPebo0aP079+frl27kpCQwDPPPMNjjz1GTExMOUYuhLhiZG2C9E/zXlxe2VcVsx+KqwRs+W/B/XlJSeYauLjEBQFf2dSFNyB3H5eqNuczg/ks6vwES49WaefJ2o5Key/vVeF/N5X6DCr3mKvC9gomNKe3isSjQzzr1q2zeb1gwQJq1qzJzp07iYqKKvKYjz76iLp16zJr1iwAmjRpwo4dO3j77be57bbb3B2yEOIKozI+x/K3mPt7N1T6AvC/G02rWF8U9lLm1LzKw8X9rk2W5CXnd/BtVUybvHNlLMSycFtxq8xqqIwlaMFTyx6wlzEr5+aRmEvP+64oXjVglZKSAkDVqsWPUcbHx9Onj+16An379mXHjh3k5OQUap+VlUVqaqrNJoS4imTvpjySE1BgOm4Z9rla5R4AsktppIOc3aWfK3snpVdk3mF3aOLK4zUJilKKyZMnc+ONN9K8efNi2yUnJ1OrVi2bfbVq1SI3N5fTp08Xaj9jxgxCQkKsW3h4uMtjF0J4sXKfuGpHJeEKy557V/a1066UisyuY86bJOvMVpF4zd088sgj/P777yxZUvoY7uXdp/njmUV1q06dOpWUlBTrlpiY6JqAhRBXBt8bKZ+kQQeG5mi6wHK4lpfyaQpapVIaKTDaUZ3YN4qS/910aMauDgTn/cxoTm+O2rp1K4MGDaJ27dpomsa3335bYvstW7agaVqh7c8//7RpFxMTQ9OmTTEajTRt2pQVK1Y4HJtXJCiPPvooq1atYvPmzdSpU6fEtqGhoSQnJ9vsO3XqFAaDgWrVqhVqbzQaCQ4OttmEEFcPLXAs5TPEY0ar9GA5XMd7aZofBIyi6CrKAHrwjUIzXFv6uQJHYTvJ1uZdwAj+w8oWqLBKT0+nVatWfPDBBw4dd+DAAZKSkqxbw4YNre/Fx8czfPhwRowYwZ49exgxYgTDhg3jl19+cegaHu0fU0rx6KOPsmLFCrZs2UL9+vVLPSYyMpLvvvvOZt+GDRto3749Pj4+7gpVCHGF0nzbQvDLqNTnsfxNlj+vIe9LjhwsX4T5SYwubzMAWVz6ksybsKkFWR6dBS4NV5jQKj2G5nez2+/H22mVxqNyj0LWGi5Ncs2bpGxohFb5bfvO49MEQt5GpTxB4X8fI1qVj9H0Nd1wB57jiZVk+/XrR79+/Rw+rmbNmlSuXLnI92bNmkXv3r2ZOtUygXnq1KnExcUxa9Ysu0ZJ8nk0QRk/fjyLFy9m5cqVBAUFWXtGQkJC8Pf3Byw3duLECRYuXAjAuHHj+OCDD5g8eTIPPPAA8fHxzJ8/36GbFkJcXbSAYeB7AypjSd4ETR80v+7gPxRUtqVycPZ2S2PfTmgBw0HzhYvLUZlbgBzwaY0WcBfoqkPmKlTmBlAZYGhiqRDs09Rj9+dNNM0Ald+F7GGoi9+AKRF0VdH8BoNfLzTN1/5z+Q8En1aoi0utC7Vpxq7gfweavrr7bsJDnJ1HUp5zUNq0aUNmZiZNmzblueeeo0ePHtb34uPjmTRpkk37vn37Wp++tZdHE5S5c+cC0L17d5v9CxYsYPTo0QAkJSVx/PilhX3q16/PmjVrmDRpEh9++CG1a9dm9uzZ8oixEKJEmqFesY+kakETgAmF3wi8Hy3w/sL7A+5GC7jbtQFWIJqmgbEzmj1zTUo7lyEcLegJF0R19bj8aVWj0YjRaHTJucPCwpg3bx7t2rUjKyuLL774gp49e7Jlyxbr8iDFPcxy+fSM0nh8iKc00dHRhfZ169aNXbt2uSEiIYQQwjPMOFmLJ2/uz+VPq06bNo3p06c7E5pVo0aNaNSokfV1ZGQkiYmJvP322zbrlxX1MIuj6wNVrGe0hBBCiCuUKuOTOAWPB0hMTLR5IMRVvSfF6dSpE4sWLbK+Lu5hlst7VUrjFU/xCCGEEFe7/GrGzmxAoSdX3Z2gJCQkEBYWZn0dGRlJbGysTZsNGzbQubNjQ37SgyKEuKqp7J1FVjNWplNwYSaYEwEFWhUIHIGu0iNFn8d0EpXxJVxcaVlNVh9hmVTrP8ShiaGepHITURlfQObqvErN1+VVau6PZs/CaeKKk5aWxuHDh62vjx49yu7du6latSp169Yt9KDKrFmzqFevHs2aNSM7O5tFixYRExNjUw9vwoQJREVF8cYbbzB48GBWrlzJxo0b+fHHHx2KTRIUIcRVS6UvRF14BZuaL1kbUVnri2h8DtJmY87agq7aN7Zv5RxEnb0nb5n7vMdhc/9ApT4HF7+Dqp+iae79K9ZZKnsX6twYUNlYfxc5e1ApCZC5ASrPkiTFzTzxFM+OHTtsnsCZPHkyAKNGjSI6OrrQgyrZ2dlMmTKFEydO4O/vT7NmzVi9ejX9+/e3tuncuTNLly7lueee4/nnn6dBgwYsW7aMjh07OhSbpuyZqVqBpKamEhISQkpKiizaJsRVTOXsQ525tWwHBz6MLmii5TzKjDrdB0wnKLp2jA4C70PnxU+iKJWFOhUFKoWiF7XT0IKeRgscU96heVx5fGfkX2PwhrH4BJa9ty0nPZuVfT6rMN9vMgdFCHFVUulfUOYl8DMuTQgk+2dLkcBiC9uZIWMJSmWV7VrlIXOtpYeo2BV3FSo9GqXKY0VeISwkQRFCXJ1ydlBytdwSqALrTOTsptRER6VB7tGyXascqJzdlDrib04C89nyCOeq5YlaPN5M5qAIIa5SrppPYed5vLryrr33IHNQ3KngkzhlPb4ikR4UIcTVydiNMicpWoEaML6dKbUnRlcT9KXXGvMUzbcLkFtSCzBcD1rlcopICElQhBBXKS3gHiwFA8vwV2el8Zd+9mkJPq0pKdnRAsd69xMwxm6gj6D4e1BogQ86vBKocIyr1kGpKCRBEUJclTRDBFrlD7CMdBf8KNRRYs+K3xB0gXddOo+mWc6jjyhwPJfO4T8MAka7Kmy30DQ9WpVPQVcjf0/ef/PuIfD/wG+QJ0K7qkiCYsubB0WFEMKtNL+boMYPRVYzVioDLsyA7F2gTGCoD0FT0Bm7FD6PviZUXwmZa1EXv7c8rquvZ6mK7NPuiuh50AwRUH0tZH6HylwHKh0MjdAC7kLzaebp8MRVSBIUIcRVTdOHFlnNWAOo8on959GMllVj/Ye4MrxypekCIeBOtIA7PR3KVUkmydqSBEUIIYTwAgqcLBZYsUiCIoQQQngB6UGxJZNkhRBCCOF1pAdFCFFhZGdnM33IW+zcsAez2dLhHVwtiP97dwQ3DdkH6V/kLemugS4cgh5H59+vyHOpnD8tVY6zNgMm8GmFFjgSzdjNJbGazWchZVre+bMBPfjeAEHPo+XssVRGNh0DrRL4D0ILGIGmDy061qwfUemfQ06C5TzGbmiBo9F8mhZzbwdRGZ9D5g9ADvi0QAsYBcbuDk3oVeYLlmX8L34D5tOgq4EWMAz8h6PpKjn6K7nqSQ+KLSkWKISoEC5ezOKOGmPJysi+7B2F3qB4fdkRWkamFz4wYDS64Gdsj8hcizo/CctU2fxF2PIqHgc+4HThP3PuCTh9M1BSfR4dl2rj6EALRKv6RaGkw3xhFqTPwaYiM3pAoYW8heZv+3iwyoxFnZ+AZcbCZfcWMBIt6Fm7khRlOoU6exeY/sF29oNmeYKp2hI0XdVSz+PtyrNYYNR3D2MILHvV69z0LLYOmlNhvt9kiEcIUSFMvvH5IpITAA2zWWP6mHpkZhTxxZsRjTl7r/WlMiWjzj+O7Rc4l35O/wSVucm5YM+OouTkBGwL95lBZaDOPYxSl2JSWdvykpMC8Vl/NqNSnkTl/nOpvel0XuJlKqI9kLEQstbbdQsqZSqY/qXw1EwFpuOolOftOo8QxZEERQhxxTOZTBxOKL4YnzJrpKfqiVtZpegGF16/1DZjGZbkoLjOZT0qI7qsoWLOPQLm42U40gTmfyFrq3WPSv+c0pbrVxeXXXpx8WssS9oXd286y7BWKVTu35C9jeKX+DdB1kaUKbnUc4lLZKE2W5KgCCGueH//kVhqG70B/tgRUPSbuQcv/ZyTgG3vxeVMkL3bkfBsZW4s+7EYUDkJl17mJFByHSATZO+wvlLZuyn53syQs6f0MOxpg4Kc3+1oJ/IppTm9VSSSoAghrng+Rl87Wil0huJ7Di6xo2aOU3V1nHk2QWEbnx0f4QWrKGt6Sq89ZM+92fvV4cX1h4TXkwRFCHHFC7++dqkTO025OtpGpRX9pm8764+a8UZK/hLXg2/h5e7t5lRNGxOasfOll8YoSk4CNDTfrpdeGbtQ8nJeeihiKf9CfDtS+teHj83vVZTOjOb0VpFIgiKEqBA69GtT7Hs6vaJmnWw6900pukHQs5d+9h9qebS32I9HM1rg2DLHqTPUsFRAdpgeDM3Ap711jxY4iuKHbHSg+UPA7Zd2+Q0GLYTi782EFnhfqZFo+hqWcxV7Hh34346mq1zqucQlMgfFliQoQogK4dXvp1KrXo0i3/PxNfPql0fQFzW6EvwKOsM11peaLsRS2VcLwLYnxTI8ogW/jObb1rlgqywErehYL/WI5P8372NaXwetylybniLNpyVayAwKV2DWQPNDq/KJzaO+mq4SWtXP8hKwou5tOprvDXbdghY8rUCydFnMvpFowVPtOo8QxZGF2oQQFcaiI3NY+sYKlr25kvSUDHQ6jWtb1WPqlxO4JuIoXHgbco9a5mL4toWgqegM1xY6j+bbBmpshIvLUZlbsCxm1tpS2ddQz+k4dboAzDW2QcankPElmM9bEiL/IVDpUbTcA5aniUx/gRaM5j8A/PqjaX6FY/UfCj7tUReXQvZOwIBmjLL0YOirFW7v0+LSvWVtApWdd293ohXxuyiOpguAqp9D1hbUxeVgPgm62mgBQ8E3Ck2Tv38d5exE14o2SVYWahNCCCGKUZ4LtbVfPtHphdp2DJ1VYb7fpAdFCCGE8ALSg2JL+uCEEEII4XWkB0UIIYTwAsrJJ3EqWg+KJChCCI9LPXOB7+ZuYH30ZlJOp1IzvDoDHuzNzffdhF9A2cfk7aGyd1qWd8/+xbLDt6OlErCs4SHKmQKcmRVa0SaUSoIihPCok3//x8Suz3Pm37Mos+Uj9tgficyZuIB1CzYxc/N0AkMC3XJtlb4QdeEVbCoBZ21EZa2HoOfQAke65bpCiNLJHBQhhEe9etcsziWfsyYnAChQSnF073HmTIp2y3VVzr685ASKquyrLryCytnnlmsLURRZSdaWJChCCI85vPso+7cfxJRb9GqoZpOZTV9uI+V0qsuvrdK/oORl4vWo9EUuv64QxZFigbYkQRFCeMz+7YdKbZObY+Kv3cdcf/GcHZRaCTjnN9dfVwhhF5mDIoTwGL3evr+R9AZ3VMW155zyESnKj1lpaE70gkgtHiGEcJE2PVuUXDgY8As0cn2HBq6/uLEbpQ3xWKoFC1E+lHJ+q0gkQRFCeEzYtbXofEsHdMX0pGiaxuDxN+MfWLgGjbO0gHuwZEdFZUgaoEMLuNfl1xVC2EcSFCGERz2xYDwN21mK1OUnKjqD5b+dh3Rg9Mt3uuW6miECrfIHWIZxCn4U6gADWuX30Qx13XJtIYoik2RtyQCrEMKjKlUOZNa2l4lftYPYhXGcPXme0Po16Tf2Jtr2aommue9DV/O7CWr8YKkcnL3dstO3E1rAcDR9qNuuK0RRpBaPLelBEUJ4nMHHQNfbOvHSyqf4YPsMnlsyiXa9W7k1Ocmn6UPRBU1AV22JZQuaIMmJ8Ahz3lL3zmyO2rp1K4MGDaJ27dpomsa3335bYvvly5fTu3dvatSoQXBwMJGRkaxfv96mTXR0NJqmFdoyMzMdik0SFCGEEOIqlZ6eTqtWrfjggw/sar9161Z69+7NmjVr2LlzJz169GDQoEEkJCTYtAsODiYpKclm8/NzbC6ZDPEIIYQQXsDZJ3HKcmy/fv3o16+f3e1nzZpl8/q1115j5cqVfPfdd7Rp08a6X9M0QkOd64mUHhQhhBDCC1gSFGcmyZZ/zGazmQsXLlC1alWb/WlpaURERFCnTh0GDhxYqIfFHtKDIoTwOEerGedk5xC7cCvff7SeE4eTCQwJoNe9Udwy/maq165axBUcp3L+tFQ5ztoMmMCnFVrgSDRjN5ec35VU1o+o9M8hJwHL+i3dLBWZfZp6OjThAamptqUhjEYjRqN7qoLPnDmT9PR0hg0bZt3XuHFjoqOjadGiBampqbz33nt06dKFPXv20LBhQ7vPrSlV0ZZ2KVlqaiohISGkpKQQHBzs6XCEuOoVVc0YDTQ0rm0VUaiacdbFLJ4dMIM9W/ah6TTrMTq9jsCQAGZueZH6zZ17PFhlrkWdn2QJxLocfl7F48AH0AU94dT5Xcl8YRakz8GmIjN6QKGFvIXmP8hjsVUE5fGdkX+N676Yij6g7Gv+mDIyOTxiRqH906ZNY/r06aUer2kaK1asYMiQIXZdb8mSJdx///2sXLmSXr16FdvObDbTtm1boqKimD17tl3nBhniEUJ4mKPVjL948Wv2bv3D0qzAMWaTmfSUDKYPfQuzuejig/ZQpmTU+cctQRRR5Zj0T1CZm8p8fldSWdvykhMoHKsZlfIkKvcfD0QmykK5YANITEwkJSXFuk2dOtXlsS5btoz77ruPr776qsTkBECn09GhQwcOHSq99pbNcc4EKIQQznC0mnF2ZjbffbQBs7nojl+zycy/h5NJ+GFvmWNSGcsAM5c+7i+nR2VEl/n8rqTSP6e0mkLq4rLyCUZ4jeDgYJvN1cM7S5YsYfTo0SxevJgBAwaU2l4pxe7duwkLC3PoOpKgCCE8xtFqxv8cTCIj9WKJ7fUGHX/EHyx7UDkJWBKU4pgge3fZz+9KOQmUWpE5e0d5RSOc5ImVZNPS0ti9eze7d+8G4OjRo+zevZvjx48DMHXqVEaOHGltv2TJEkaOHMnMmTPp1KkTycnJJCcnk5KSYm3z4osvsn79eo4cOcLu3bu577772L17N+PGjXMoNklQhBAe42g14+Jq9hSklLPVj+04VnNHdeWysOP3p8mzEFcMV43xOGDHjh20adPG+ojw5MmTadOmDS+88AIASUlJ1mQF4OOPPyY3N5fx48cTFhZm3SZMmGBtc/78eR588EGaNGlCnz59OHHiBFu3buWGG25wKDb5X64QwmOs1YxL+GAtWM04vFFtqoZV5mzS+WLbm01m2vZqUeaYNOONqOwfSwhKD75dynx+lzJGQeYaiu9F0dB8u5ZnRMIZztbTKcOx3bt3p6RnZaKjo21eb9mypdRzvvvuu7z77rsOx3I56UERQniMo9WM9QY9dzx+S7Hn0xt0NOl0PY1vsP9RxkL8h4JWieI/Hs1ogWPLfn4X0gJHUfxwlA40fwi4vTxDEsJlJEERQniUo9WMh04cQP8HegKWhARA01n+cqx9XRjTYqY4FY+mC0Gr8iloAVi6d/LpAQ0t+GU037ZOXcNVNJ+WaCEzsHyUFxx20kDzQ6vyCZrONevCCPfLX0nWma0ikSEeIYRHOVrNWKfTMfGjh+g9ohurP9nIPwf/JahqED3u7EK3OyLx9fN1OibNtw3U2AgXl6MytwA54NMaLeAuNEM9p8/vSpr/UPBpj7q4FLJ3AgY0YxT4346mr+bp8IQDpJqxLYcXajt58iRTpkzhhx9+4NSpU4XGrkymkmaUe54s1CaEEMJe5blQW73PnkPnxEJt5oxMjo19pcJ8vzncgzJ69GiOHz/O888/T1hYWLmUQxdCCCEqPKWVaaKrzfEViMMJyo8//si2bdto3bq1G8IRQgghrk6eqGbszRyeJBseHl7iI0lCCCGEEM5yuAdl1qxZPP3003z88cfUq1fPDSEJIa4UhxOOsvy91fyyehdms5mmkddz62MDaN+nlUPn2RoTzxsj3ic7M8e6LyA4gFfXTOXgr3+x+pONnD5xhso1grl5bE/6ju3B9u922l3N2Gw28+Wry/l29hpSz15AQyOsQS3ue+1uqoZVYfms1eze/D8AWvdoztCJA2h2A1dMNWNRQZRxsTWb4ysQuybJVqlSxWauSXp6Orm5uQQEBODj42PT9uzZs3ZffOvWrbz11lvs3LmTpKSkUqsobtmyhR49ehTav3//fho3bmzXNWWSrBCu8cOX23hj1PvodJq1lo7eoMOUa+aeZ28r9Hhwcb58NYbo55eW3KjgYm4a+Pj6kJOVY1c1Y7PZzGORz3Dgt7+KPX1+3Pk/d775LM98dBydToe3VzMW7lWek2TrznvB6Umyxx98qcJ8v9nVgzJr1iy3XDw9PZ1WrVoxZswYbrvtNruPO3DggM0vv0aNGu4ITwhRjORjp3hrzAcos8JUoHBf/pf8l6/G0OzGxnTo27rUc5WanIDtX4YKcrIsPS3FVTNe8Od7eckFRL+wtMTkpGDcAJWrZ/H0h3/nv1OwleU/6Z+gfNqh+d1UetxCiDKzK0EZNWqUWy7er18/+vXr5/BxNWvWpHLlyq4PSAhhl9Ufx5Y4IU+n1/Ht+2tKTVBevXuWS+MqWM24XW/LMNN3czY4dI7+955B04Gu2Bl6lmrGkqAIt6hgwzTOcHiSrF6v59SpU4X2nzlzBr2+fApotWnThrCwMHr27MnmzZtLbJuVlUVqaqrNJoRwzv9++hOzqfiKv2aTmX0/HSj1PDvX73ZhVBaXVzNOO5/u0PFN2qVT8keZF1UzFhWKJ6oZezOHE5TipqxkZWXh6+v8Co4lCQsLY968ecTExLB8+XIaNWpEz5492bp1a7HHzJgxg5CQEOsWHh7u1hiFuBrYU1XYnjZa8d0UZeZsNWOzSUMVn3tZeE01Y1GheKCasTez+yme2bNnA5biXZ9++imVKlWyvmcymdi6davdE1XLqlGjRjRq1Mj6OjIyksTERN5++22ioqKKPGbq1KlMnjzZ+jo1NVWSFCGc1OHmNuzdtt9mDkhBeoOODje3LvU8A8f1ZvGry10a2+XVjKvVrsKZf8/ZffzOuCDadb9A8X+LelE1YyEqMLsTlPzSyUopPvroI5vhHF9fX+rVq8dHH33k+ghL0alTJxYtWlTs+0ajEaPRWI4RCVHx3Ty2B4tfjSErIwtzEUmK2aQYOnFgqecZ8/JdLk1Q9AYd17e/zqaa8b3P38F7/zfP7nPEflWFex9Pxj/QXMxQj/dUMxYVjQYlpMb2HV9x2N2/evToUY4ePUq3bt3Ys2eP9fXRo0c5cOAA69evp2PHju6MtUgJCQmEhYWV+3WFuJpVrhHCq6ufwRhgtFYSBsuwjk6nMeWzh2nUvoFd53ptzdRS21irHOf9t3LNEMC+asYDH+pNrxHFr12iM+hshqMy0nyZNrohSvnj7dWMRQUjQzw2HF6orbRJqY5IS0vj8OHD1tdHjx5l9+7dVK1albp16zJ16lROnDjBwoULAcvjzvXq1aNZs2ZkZ2ezaNEiYmJiiImJcVlMQgj7tOjahM8Pf8D6zzbx67oETDkmmndpzICHelO7Qajd5+lwc1uWnJjL5K7TSDpyaQJ+w3bX8u6PL/H7lv2s++wHTv59mmqhVeg9qhudBrbjz18O2V3N+KnPH6HnvV35bOpi/jn4Lzq9jmZdGjFu5ij8Av1YPS+WPVv2AdCqezMGPNgbn9raFVHNWIiKyq6F2grO4SjNO++8Y3fb4hZeGzVqFNHR0YwePZpjx46xZcsWAN58803mzZvHiRMn8Pf3p1mzZkydOpX+/fvbfU1ZqE0IIYS9ynOhtvA509H5O7FQ28VMEh+eXmG+3+zqQUlISLB5vXPnTkwmk3XC6sGDB9Hr9bRr186hi3fv3r3Euj7R0dE2r5988kmefPJJh64hhBBCXBGkmrENuxKUgsM677zzDkFBQXz++edUqVIFgHPnzjFmzBi6du3qniiFEEIIcVVxeBGCmTNnMmPGDGtyApZaPa+88gozZ850aXBCCCHE1UIp57eKxOFJsqmpqZw8eZJmzZrZ7D916hQXLlxwWWBCCPcwmUzELfuZlR+u4+8//sEYYKT7sM4MeawfYfVrufXaf/52mA8fm8/BHUcwm8yWaw/vzCPvj8WviCJpF9MusvbTTYWqGfe8tysLnlvKtm/iybqYjU6vo3HH6/i/WWNI/uskKz9cx9G9xzH6+xJ1eyS3Tujv0MRdT1IqBy6uQmV8CaZjoFUC/0FoASPQ9FfGPYgykmrGNuyaJFvQyJEjiYuLY+bMmXTq1AmA7du388QTTxAVFcXnn3/ulkBdRSbJiquZKdfEq3e9y7aYX9DpNOsaJjq9Dl8/H15f/zzNOjcq5Sxls3nZT7x216wi3wuqWokvjnxIYHCAdV/q2Qs83m0af//xDwpl/fDVdBqo4le1Bsv95C/FrzPo8PEx8OqaZ2jVrVmxx3gDpbJR5x6C7J+wdHDnL2mrAy0QreoXaD5NPRjh1ac8J8nWef9FpyfJ/vPotArz/ebwEM9HH33EgAEDuPfee4mIiCAiIoJ77rmHfv36MWfOHHfEKIRwkRWz1/Dj8l8BbBZYM5vMZF/M5oXBb5Cdme3y62Zn5/D6vbOLff/C2TSeH/S6zb4PHpnP8T9PWBKRArmIMqsSkxPApk6QOddMdlYO0259k8yMrLLdQDlRaXMhOz7vVcH19s2gMlDnHkYpU1GHioogf5KsM1sF4nCCEhAQwJw5czhz5gwJCQns2rWLs2fPMmfOHAIDA90RoxDCBcxmM8vfW13sl7vZrEg9c4Gt32x3+bW/fDmmxOKCAHt/3E9G2kUAziafI+7r+FKPsZcyK9LPZ7Bl6U8uOZ87KJUNGYuwTUwKMoH5X8gqvvaYuLJpyvmtIilzpa7AwEBatmxJq1atJDER4gqQ8l8q/yWeKbGN3qC3qQTsKrs37y29kYL//bgfgEM7j7gsOcmnN+jY93PpFZY9xvQPqJRSGhlQOQmltBFXLFlJ1oZdk2SHDh1KdHQ0wcHBDB06tMS2y5e7tvCXEMI17KkujHZp+XiXXtvOqsU+vj6W9vbE6jDNqSrH7mdPbMrOdkJc+exKUEJCQtA0zfqzEOLKE1wtiHrNwy2TToupQmzKMdGudyuXX7v7sM7878c/S2yj0+toEdUEgKaR1+Pr50N2Zo7LYjDlmmjXu6XLzudy+nDQhYE5qYRGJjRj53ILSZQzWajNhl0JyoIFC4r8WQhx5dA0jeFPDuGNke8X+b7eoCO0fi069Gvt8msPergvnzy1iKyLxU/AvXFoRwwGy0dSYEggAx/qw4r31xSbTDlCp9dRo041Og/u4PS53EXTdBD4AOrCS8W00IOhMfi0L9e4RDmSx4xtONyP+sknn3Do0CF3xCKEcLOe93Tl7mcsw7TWSsCaBhpUCa3Cq6unote7fghBp9Px9pYX0fsUfe76Lery7JKJNvvue/0ebuhvqRp8eTVjX3+foq+T9/6lewM0S/XjGeue9fIhHiDgHvC/N+9Ffqx5H9P6OmhV5lp7s4Wo6BxeB6Vx48YcPHiQ0NBQunXrRvfu3enWrRuNGzd2V4wuJeugCAGHdh3hu482cHTvcQKC/Ii6PZKb7r4R/0r+br1u6tkLfPrUl/z07S9kZ+ZQNbQyw54czIAHehfZ3mw2szP290LVjDsOaMvaT3/g63e+4/zJFIwBvtx4a0fuf/0eko/9x+qPY/lrzzH8K/lx460d6XlvFAFB7r03V1LZCaiMZWD6C7RgNP8B4NcfTSv7GhmibMq1WODMl50vFvj48xXm+83hBAUgOTmZzZs3ExcXx5YtWzh06BA1atSge/fuLF261B1xuowkKEIIIexVrgnK2y5IUKZUnATF4aXuAUJDQ7nrrru45ZZb+PHHH1m6dCmLFi3im2++cXV8QgghhLgKOZygrF271tpzsmfPHpo1a0ZUVBQxMTFSzVgIIYQoK3mKx4bDCcqAAQOoUaMGjz/+OOvXr5fHjoUQQggXcHY12Iq2kqzDCco777zD1q1beeutt3jnnXesE2W7d+9OkyZN3BGjEAI4/18K383ZwPrPN3PhbBq16tVg4IN96DumO0Z/o9PnN5lMvH7vbLbF/IIp11LvJSDYn1EvDkPT6Vj6+recTT4HQI061bj3+dvxD/RjwfNLST56EgWEVA9m6MQBXN/2Wj5+YqF1zZXAkABuvu8mbn2sP9/NWc+mxT+SnppBnetrM+j/+nJDv9as/XQT66M3k3I6lZrh1RnwYG+6De/M5sU/FqpmPHBcb4KqVHL6noUQ3qtMk2Tz7d27l7i4ODZv3sx3331HtWrVSEoqaZEhz5NJsuJK9O9fyUzq+jzn/0u1LgGf/7Rpw3YNeOuHaU49pWIymRgW9gCppy+4ItxiWR771axrm2g6y88+Rh9ysnMureOgAQp8/HzIzcotVM24Znh13t32MjXqVHNrvEKU5yTZum+84vQk2eNPPedQrPkdDjt37iQpKYkVK1YwZMiQEo+Ji4tj8uTJ7Nu3j9q1a/Pkk08ybtw4mzYxMTE8//zz/PXXXzRo0IBXX32VW2+91aH7KfN60gkJCWzcuJENGzawadMmzGYzderUKevphBDFUErxyvB3bJITy37LdjjhKJ88+YVT15h265tuT04gL+YCC6/l/5yTlWO7yFTezzmZOUVWMz594gxvjCp6wTkhhP3S09Np1aoVH3zwgV3tjx49Sv/+/enatSsJCQk888wzPPbYY8TExFjbxMfHM3z4cEaMGMGePXsYMWIEw4YN45dffnEoNod7UPKf3ElNTaV169bW4Z2oqKgrokdCelDElWb/L4d4LPKZEtv4GH34OvkTAkPKVrizj2GYS1ZsLW+f7nuXiCbyh5Fwn/LsQYl44xV0fk70oGRm8reDPSgFaZpWag/KU089xapVq9i/f79137hx49izZw/x8fEADB8+nNTUVNauXWttc/PNN1OlShWWLFlidzwO96Bcf/31LFy4kLNnz7Jjxw7efvttBg4cKF/2QrjJ/u0H0XQlz87PycrhyO/Hy3yNKzE5Adi/XVa1FuJyqampNltWVpbLzh0fH0+fPn1s9vXt25cdO3aQk5NTYpuff/7ZoWs5nKBIQiJE+dLpdXbV2HBHFWJvdzXes6jA8h8zdmYDwsPDCQkJsW4zZsxwWYjJycnUqlXLZl+tWrXIzc3l9OnTJbZJTk526FplWqhNCFF+2vZqSWkjsYEhAVzXpn6Zr2Hw1ZObbSrz8Z6gaRqtujfzdBhCuI6LigUmJibadCIYjc4/5VfQ5fWg8j+fCu4vqo2jdaTkzw8hvFzdxtfQoV8bayG8y2maxq2P9cfXz7fM1+h3f68yH+sJOr2ObsM7UzO8uqdDEcLrBAcH22yuTFBCQ0ML9YScOnUKg8FAtWrVSmxzea9KaSRBEeIK8PQXj3JtywigcMXeqDsiuff52506/2Mf3M91bcveA2MvY4AlicqfU5N/D5VrWv7as1YtzttfJbSy7f68/zbu2JBJHz/k9niFKFfKBZubRUZGEhsba7Nvw4YNtG/fHh8fnxLbdO7c2aFryRCPEFeA4KpBzI5/lZ+//Y2Ni7Zy/r8Uwq6txc1je9LmpuYOd50WZe6ON1n9aSwLnl1K6pkLaJpGeKPaPPH5eEzZJuY98QVH9v6Npmk0bHMtD84cia/Rh4+nfM7+7Ycwm8zUbXIN9824h2uuC+WjKQtJ2LgXU66JWhE1GPniMG7o14a4r+LZvPRH0s5nULfxNQx4sBfXt29A/KodxC6M4+zJ84TWr0m/sTfR+qbm7Nq4t1A148hB7dEb9C74zQrhPTyxkmxaWhqHDx+2vj569Ci7d++matWq1K1bl6lTp3LixAkWLlwIWJ7Y+eCDD5g8eTIPPPAA8fHxzJ8/3+bpnAkTJhAVFcUbb7zB4MGDWblyJRs3buTHH3908H7seMw4NTXV7hN6++RZecxYCCGEvcrzMeN6r77q9GPGx5591qFYt2zZQo8ePQrtHzVqFNHR0YwePZpjx46xZcsW63txcXFMmjTJulDbU089VWihtm+++YbnnnuOI0eOWBdqGzp0qEP3Y1eCotPpSv0LLX8CjMnk3RPtJEERQghhr3JNUF5xQYLynGMJijeza4hn8+bN7o5DCCGEuLq56CmeisKuBKVbt27ujkMIIYQQwqrMk2QzMjI4fvw42dnZNvtbtmzpdFBCCPcxmUzELfuZlR+u4+8//sEYYKT7sM4MfvRmjv9xghWzV3Ngx18YfAx0vqU9t04YQP3mdYs81+GEoyx/bzW/rN6F2WymaeT13PrYANr3aVVk+//+OcPKD9YWqmbc696uGHzs/zjKyc4hduFWvv9oPScOJxMYEkCve6O4ZfzNVK9dtUy/FyE8zROTZL2Zw7V4/vvvP8aMGWOzxn5BMgdFCO9lyjXx6l3vsi3mF3Q6DXOBqsI6nYYp14xOr7MWJbQ8BqzxwteP03lwB5tz/fDlNt4Y9b71uPz2plwz9zx7G6NfvtOm/eHdR5ly03QuXsi8VJE5r5pxu94teWnV0/gafUq9h6yLWTw7YAZ7tuyzHg+WR5ADQwKYueXFYhMqIRxVnnNQ6r/4mtNzUI5Oe6bCfL85vA7KxIkTOXfuHNu3b8ff359169bx+eef07BhQ1atWuWOGIUQLrJi9hp+XP4rgDU5AUstnvwko2DFZFOuGZPJxCt3vsu5k+et+5OPneKtMR/YHJffHuDLV2P4bf3uS/tNJqYNedMmOcm/LsCuH/ay5LXldt3DFy9+zd6tf9gcnx93ekoG04e+hdlsLu5wIbzXFbAOSnlyOEHZtGkT7777Lh06dECn0xEREcG9997Lm2++6dL1/oUQrmU2m1n+3upSl80vREFuTi7rPrs0WX71x7GUdBqdXse376+xvv51TQKnjp+2SU5sLmFWrPxwHTnZOSWGkp2ZzXcfbbBJrgoym8z8eziZhB/2lngeIYT3czhBSU9Pp2bNmgBUrVqV//77D4AWLVqwa9cu10YnhHCZlP9S+S/xTJmOVWbFH/EHrK//99OfxSYbYEkU9v10qf3+7QfR+5S8sNqFs2kkHz1VYpt/DiaRkXqxxDZ6g44/4g+W2EYIb5Q/B8WZrSJxOEFp1KgRBw5YPnhat27Nxx9/zIkTJ/joo48ICwtzeYBCCNcorpaPPTRNs0kw7DlXwTaWisylf3qWtjqsPddVqvTzCOGVZIjHRpnmoCQlJQEwbdo01q1bR926dZk9ezavvfaaywMUQrhGcLUg6jUPt9bBcYRC0bbnpSf0OtzcpsTz6A06Otzc2vq6Xe9WNnNVilIzogah9WuW2Ca8UW2qhlUusY3ZZKZtrxYlthFCeD+HE5R77rmH0aNHA9CmTRuOHTvGb7/9RmJiIsOHD3d1fEIIF9E0jeFPDrGZWGoPnV4jqEoleo2Isu67eWwP/AKM6IpJUswmxdCJA62vm9/YmIZt61uLAxZl2JRb0OlK/kjSG/Tc8fgtJbyvo0mn62l8Q8MSzyOEV3J2eOdq70F56aWXyMjIsL4OCAigbdu2BAYG8tJLL7k0OCGEa/W8pyt3P2Oph5GfLGiaBhoEVg4EzXYYRdM0AoIDmLHuOQKC/K37K9cI4dXVz2AMMNr0pOj0OnQ6jSmfPUyj9g1szvPit09Rq56lh+TyasaDx9/MLQ/3tesehk4cQP8HetreQ975al8XxrSYKQ78RoTwIjLEY8PhdVD0ej1JSUnWibL5zpw5Q82aNWUdFCGuAId2HeG7jzZwdO9xAoL8iLo9kpvuvpHTJ87y/Uex7P/lED5GA5GD2tNndHeCqwYVeZ5zp1JY/9kmfl2XgCnHRPMujRnwUG9qNwgtsn3Wxawiqxk3jWzkUPxKKfb99CerP9nIPwf/JahqED3u7EK3OyLx9fN1+PchRHHKcx2Ua597Db0T66CYMjM58krFWQfF4QRFp9Nx8uRJatSoYbN/06ZNDB8+3PpUj7eSBEUIIYS9yjVBedYFCcqrFSdBsXtt6SpVqqBpGpqmcf3119tUNzaZTKSlpRUqtyyEEEII+8hS97bsTlBmzZqFUoqxY8fy4osvEhISYn3P19eXevXqERkZ6ZYghRBCCHF1sTtBGTVqFAD169enS5cuGAxlrjMohBBCCFEih7OMbt268ddff7FgwQL++usv3nvvPWrWrMm6desIDw+nWbNm7ohTiHJlMpnYtPhHVs1ZT+KfJ/ALNNLjzhsZ8mg/akXUKP0EXiA7K4cN0Vv4/uMNJB05SaXKgfQe0Y2B/9eb37f8Uaia8ZDH+hFWv5anwxbi6uXskzgVbIjH4UmycXFx9OvXjy5durB161b279/Ptddey5tvvsmvv/7KN998465YXUImyYrS5Obk8uJtb7P9+52FquUaA3x5M/YFr19nIzMji6f7vsy+nw+goVnr7+j0OvR6HTnZuTbVjHV6Hb5+Pry+/nmadXbsiRohKrLynCR73dPOT5I9/HrFmSTr8DooTz/9NK+88gqxsbH4+l56nK9Hjx7Ex8e7NDghPOGbmd/xy2pLXanLq+VmZWQzbcib5Obkeio8uyx4dgn7tx8ChU1xQLPJTE62JXbzZfeWfTGbFwa/QXZmdrnHK4QQl3M4Qdm7dy+33nprof01atTgzJmyFSITwluYTCaWz15TbMVfs8nM2eTz/PTtb+Ucmf0upmey5tONJRbzK4rZrEg9c4Gt32x3U2RCiFLJIm1WDicolStXttbiKSghIYFrrrnGJUEJ4SlnTpzlXPL5EtvoffTsL1DZ19sc33+CzPSsMh2rN+ilErAQniIrydpwOEG5++67eeqpp0hOTkbTNMxmMz/99BNTpkxh5MiR7ohRiHJjV8VfL6+Wq3eiajEaJdbLEUKI8uLwJ9Grr75K3bp1ueaaa0hLS6Np06ZERUXRuXNnnnvuOXfEKES5qVa7KnWuD4MSCv6ack206dWy+AYeVq95OMHVi16avjSmHBPterdycURCCHs4UyjQ2UXevJHDCYqPjw9ffvklBw8e5KuvvmLRokX8+eeffPHFF+j13vtXpRD2yK/4W1xXqc6gI6JpHdr2alGucTnC4GPg9kmDSkyyiqI36LimYRgd+rV2S1xCiFLIEI+NMq+21qBBA6699loAm2XvhbjS9R3Tg+P7/+Hrmd+hN+gw5ZrRNMujujXqVOOV76ei03n3MMiwJ28h8cAJYhfGXbqHvEemQ2oEk/Jfqu29oagSWoVXV0+VPzSEEF6hTAnK/Pnzeffddzl06BAADRs2ZOLEidx///0uDU4IT9A0jQffGkm3YZ35/uNYju1LJCDYn253dKbHXV3wDyz7OgXlRa/X88SC8fQd04O1n/7AP4eSCKkeRM+7u3LjbZ34e19ikdWM/Sv5ezp0Ia5aUovHlsMJyvPPP8+7777Lo48+aq29Ex8fz6RJkzh27BivvPKKy4MUwhMadbiORh2u83QYZaZpGq26NaNVt8KrOzdsey2T50lxTyG8iqwka8PhBGXu3Ll88skn3HXXXdZ9t9xyCy1btuTRRx+VBEUIIYQQTnM4QTGZTLRv377Q/nbt2pGb692rawohhBBeS3pQbDg80+/ee+9l7ty5hfbPmzePe+65xyVBCSGEEFcbeczYVpknyW7YsIFOnToBsH37dhITExk5ciSTJ0+2tnvnnXdcE6UQV7ANC+NYOH0Zp/7+DwVUrhnCsCm3cMfjtxTZ/o/4A3w4YQGHdx3BbFb4BRq56e6ujH9vDL5+voXaZ1y4yOp5G1n76UbOJJ2jSq3K3Dz2JgaN601gSKDdcSql+GX1LlbMXs2BHX9h8DHQ+Zb23DphABfOprH8vdX8vuUP0KBt75YMnTCApp2uL+uvRQhxOelBseFwNeMePXrYd2JNY9OmTSW22bp1K2+99RY7d+4kKSmJFStWMGTIkBKPiYuLY/Lkyezbt4/atWvz5JNPMm6c/ZP9pJqxKE8z75/Lus+K/v9Bm5ta8ObGF2z2bfh8M2+NmVNk+5AawSw6+iF+AZeeIjr/XwqTo17gn0NJNoUNNZ1GaL2avLvtZaqFVSk1TqUUcydFs2L2GnR6nbWOj96gw2xWKLOyPpacv99kMvPYhw8waFyfUs8vxJWqPKsZN5r4GnqjE9WMszI5MKviVDN2uAdl8+bNLrt4eno6rVq1YsyYMdx2222ltj969Cj9+/fngQceYNGiRfz00088/PDD1KhRw67jhShPO2L3FJucACRs2kvMrO+5beJAADIzMnn7vsLDp/lS/ktl2pC3eGPD89Z9s8bN48ThZJvkBCxVmE/+/R9vj/2QGWtLX+F5W8x2VsxeA2BTZDA/ISnu59njP6H5jY2p37xuqdcQQpRCelBseHS1qX79+vHKK68wdOhQu9p/9NFH1K1bl1mzZtGkSRPuv/9+xo4dy9tvv+3mSIVw3Pynvyy1zVdvrbT+HP3CskKJxuUSNu0lOzMbgFOJp/n529+KrVpsNpnZsX4P//6VXGocMe9+b18dosvo9Tq+m7Pe4eOEEIXJHBRb3r0c5mXi4+Pp08e2O7lv377s2LGDnJycIo/JysoiNTXVZhOiPPxz8N9S25xLTrH+/HvcH6W2V2bFgR1/AXBwx1/YM0K7f/uhUtsc+O1wsYlOSUy5Zn7ftt/h44QQojRXVIKSnJxMrVq1bPbVqlWL3NxcTp8+XeQxM2bMICQkxLqFh4eXR6hC2FcCokATe3swfIw+DrW3pzqx5sTS/QapfiyEa3ioFs+cOXOoX78+fn5+tGvXjm3bthXbdvTo0WiaVmhr1uzSgpDR0dFFtsnMzHQorivuk+XyD/38vyCL+zKYOnUqKSkp1i0xMdHtMQoBcH37BqW2qd3gUsLddWjHUtvrffRc385SA6v5jY0x+JY8jUxn0NGyW9NSz9uud8syDfHo9Do63NzG4eOEEIV5Yohn2bJlTJw4kWeffZaEhAS6du1Kv379OH78eJHt33vvPZKSkqxbYmIiVatW5Y477rBpFxwcbNMuKSkJPz/HJgBfUQlKaGgoycm24+mnTp3CYDBQrVq1Io8xGo0EBwfbbEKUh3HvjCq1zZiXL63IfMeUW/Axlpxw9LjzRmuhwuCqQdw89iY0XdHJuU6vo+fdXakaWvpTPHc8fovDQzyapqH30TPo/+QpHiGuVO+88w733Xcf999/P02aNGHWrFmEh4cXud4ZQEhICKGhodZtx44dnDt3jjFjxti00zTNpl1oaKjDsV1RCUpkZCSxsbE2+zZs2ED79u3x8fHxUFRCFO261vV56O2Rxb5/y/ib6Tass/W1TqfjrY3Tih2Sadj2Wp5Y8LDNvnEzR9K2ZwvL8Xk9IPn/bX5jYx790L4Cnq26N+PRD+4HzXboSNM0/AKN6A16m/06nYaP0cCLy5+gZt0adl1DCFEKFw3xXD7vMisrq8jLZWdns3PnzkJzO/v06cPPP/9sV8jz58+nV69eRERE2OxPS0sjIiKCOnXqMHDgQBISEuw6X0FlWqjNVdLS0jh8+LD19dGjR9m9ezdVq1albt26TJ06lRMnTrBw4UIAxo0bxwcffMDkyZN54IEHiI+PZ/78+SxZssRTtyBEiW6fPIh2fVoxd1I0B347jDIrIprV4YE37qVlVOEifs26NGbpv5/wyZNfEP/dDnIyc6hWuwrDn7qVfmNvKtTe6G/ktbXP8tu63ayP3syp46epXrsqfUZ3p+OAtuj1ertjveXhvrTp2ZzvP4pl/y+H8DEaiBzUnj6ju5OZlsnqeRvZs2Ufmk6jbc+W9HugJ9VrV3Xq9yOEKMBFjxlfPtdy2rRpTJ8+vVDz06dPYzKZipzbefloRVGSkpJYu3YtixcvttnfuHFjoqOjadGiBampqbz33nt06dKFPXv20LBhQ7tvx+GF2lxpy5YtRS78NmrUKKKjoxk9ejTHjh1jy5Yt1vfi4uKYNGmSdaG2p556ShZqE0II4RbluVBbk4edX6ht/5xnSExMtInVaDRiNBoLtf/333+55ppr+Pnnn4mMjLTuf/XVV/niiy/4888/S7zejBkzmDlzJv/++y++voVXuc5nNptp27YtUVFRzJ492+778WgPSvfu3Ut8TDI6OrrQvm7durFr1y43RiWEEEKUPw2bB/vKdDxg93zL6tWro9fri5zbeXmvyuWUUnz22WeMGDGixOQELMPXHTp04NCh0pc8sDnOodZCCCGEcI9yfszY19eXdu3aFZrbGRsbS+fOnYs5yiIuLo7Dhw9z3333lXodpRS7d+8mLCzMofg82oMihBBCCAtnV4Mty7GTJ09mxIgRtG/fnsjISObNm8fx48etUycunwuab/78+XTs2JHmzZsXOueLL75Ip06daNiwIampqcyePZvdu3fz4YcfOhSbJChCCCHEVWr48OGcOXOGl156iaSkJJo3b86aNWusT+UkJSUVWhMlJSWFmJgY3nvvvSLPef78eR588EGSk5MJCQmhTZs2bN26lRtuuMGh2Dw6SdYTZJKsEEIIe5XnJNlmDzk/SXbfx1dxNWMhhBBCuMlV1WVQMpkkK4QQQgivIz0oQgghhBfwxCRZbyYJihBCCOENXLSSbEUhQzxCCCGE8DrSgyKEEEJ4ARnisSUJihBCCOENZIjHhgzxCCGEEMLrSA+KEEII4QVkiMeWJChCCCGEN5AhHhuSoAghhBDeQBIUGzIHRQghhBBeR3pQhBBCCC8gc1BsSYIihBBCeAMZ4rEhQzxCCCGE8DrSgyKEEEJ4AU0pNFX2bhBnjvVGkqAIIYQQ3kCGeGzIEI8QQgghvI70oAghhBBeQJ7isSUJihBCCOENZIjHhgzxCCGEEMLrSA+KEEII4QVkiMeWJChCCCGEN5AhHhuSoAghhBBeQHpQbMkcFCGEEEJ4HelBEUIIIbyBDPHYkARFCCGE8BIVbZjGGTLEI4QQQgivIz0oQgghhDdQyrI5c3wFIgmKEEII4QXkKR5bMsQjhBBCCK8jPShCCCGEN5CneGxIgiKEEEJ4Ac1s2Zw5viKRIR4hhBBCeB3pQRFCCCG8gQzx2JAeFCGEEMIL5D/F48xWFnPmzKF+/fr4+fnRrl07tm3bVmzbLVu2oGlaoe3PP/+0aRcTE0PTpk0xGo00bdqUFStWOByXJChCCCGEN8hfB8WZzUHLli1j4sSJPPvssyQkJNC1a1f69evH8ePHSzzuwIEDJCUlWbeGDRta34uPj2f48OGMGDGCPXv2MGLECIYNG8Yvv/ziUGyaUhVsZZdSpKamEhISQkpKCsHBwZ4ORwghhBcrj++M/GvccMvLGHz8ynye3JxMfl31vEOxduzYkbZt2zJ37lzrviZNmjBkyBBmzJhRqP2WLVvo0aMH586do3LlykWec/jw4aSmprJ27VrrvptvvpkqVaqwZMkSu+9HelCEEEIIL+CqIZ7U1FSbLSsrq8jrZWdns3PnTvr06WOzv0+fPvz8888lxtqmTRvCwsLo2bMnmzdvtnkvPj6+0Dn79u1b6jkvJwmKEEII4Q2UCzYgPDyckJAQ61ZUTwjA6dOnMZlM1KpVy2Z/rVq1SE5OLvKYsLAw5s2bR0xMDMuXL6dRo0b07NmTrVu3WtskJyc7dM7iyFM8FcD+0/8RvXsnPxw9Qq7JTKvQUEa3bkv3iPpomubp8IQQQpSjxMREmyEeo9FYYvvLvyeUUsV+dzRq1IhGjRpZX0dGRpKYmMjbb79NVFRUmc5ZHElQrnBrDx/ksbXfA2DKm070c+Jxth3/m/vatOOZG7tJkiKEEFcAV9XiCQ4OtmsOSvXq1dHr9YV6Nk6dOlWoB6QknTp1YtGiRdbXoaGhTp8TZIjninYyLY2J61ZjVsqanMClRGV+wk5ijxz2VHhCCCEcUc5P8fj6+tKuXTtiY2Nt9sfGxtK5c2e7z5OQkEBYWJj1dWRkZKFzbtiwwaFzgvSgXNGW7duLSali1+bRaxrRuxPo06BhMS2EEEJczSZPnsyIESNo3749kZGRzJs3j+PHjzNu3DgApk6dyokTJ1i4cCEAs2bNol69ejRr1ozs7GwWLVpETEwMMTEx1nNOmDCBqKgo3njjDQYPHszKlSvZuHEjP/74o0OxSYJyBduV/C/mEjJmk1LsSv63HCMSQghRVq4a4nHE8OHDOXPmDC+99BJJSUk0b96cNWvWEBERAUBSUpLNmijZ2dlMmTKFEydO4O/vT7NmzVi9ejX9+/e3tuncuTNLly7lueee4/nnn6dBgwYsW7aMjh07Ong/sg7KFeu+VSvYcuxIiasb+xsM7Ht4QrnFJIQQFUl5roMSefNLTq+DEr/uhQrx/QYyB+WK1rVuRInv6zWNrnXrlU8wQgghhAtJgnIFG9qkKUFGI7pintIxK8V9bduVc1RCCCHKwlO1eLyVJChXsGCjH9GDbyPQx4eCKYpe09CAV27qTYfadTwVnhBCCEeYlfNbBSKTZK9wrUPD2DLqfr7Z/z82HT1CtslEm9Da3N2iJddWqerp8IQQQtirwGqwZT6+ApEEpQKo4u/PA2078EDbDp4ORQghhHAJSVCEEEIIL6Dh5GPGLovEO0iCIoQQQniDMqwGW+j4CkQmyQohhBDC60gPSgX29/nzfL5nF6sPHSQzN4dG1aozolUbBjRsVOyjyUIIITzDEyvJejOP96DMmTOH+vXr4+fnR7t27di2bVuxbbds2YKmaYW2P//8sxwjvjL8euIf+i3+nC9+381/GelcyM5mV3ISE9atZsK67zGZzZ4OUQghREHKBVsF4tEEZdmyZUycOJFnn32WhIQEunbtSr9+/WzW/S/KgQMHSEpKsm4NG0oxvIIu5uTw4Pffkm0y2VQ5zq/bs+bQQRbt3e2h6IQQQojSeTRBeeedd7jvvvu4//77adKkCbNmzSI8PJy5c+eWeFzNmjUJDQ21bnq9vpwivjJ8f+gAqVlZJRYS/CxhF1dZGSYhhPBqmlJObxWJxxKU7Oxsdu7cSZ8+fWz29+nTh59//rnEY9u0aUNYWBg9e/Zk8+bNJbbNysoiNTXVZqvodicnYdAV/0+rgMTUFM5nZpZfUEIIIUpmdsFWgXgsQTl9+jQmk4latWrZ7K9VqxbJyclFHhMWFsa8efOIiYlh+fLlNGrUiJ49e7J169ZirzNjxgxCQkKsW3h4uEvvwxvZOwFWX0ISI4QQQniSx5/i0S77MlVKFdqXr1GjRjRq1Mj6OjIyksTERN5++22ioqKKPGbq1KlMnjzZ+jo1NbXCJyk31o3gy717in1fp2k0qV6DYKOxHKMSQghREmeHaWSIx0WqV6+OXq8v1Fty6tSpQr0qJenUqROHDh0q9n2j0UhwcLDNVtH1rN+A8OAQ9CVUOX6onSyLL4QQXkWe4rHhsQTF19eXdu3aERsba7M/NjaWzp07232ehIQEwsLCXB3eFc2g07Fg8FCqBwQAl5Y/zk9YHrshkoHXN/ZQdEIIIYqUv5KsM1sF4tEhnsmTJzNixAjat29PZGQk8+bN4/jx44wbNw6wDM+cOHGChQsXAjBr1izq1atHs2bNyM7OZtGiRcTExBATE+PJ2/BK11apSuyIsaw8sJ91hw+SkZND4+o1uLt5S5rVtL+HSgghhPAEjyYow4cP58yZM7z00kskJSXRvHlz1qxZQ0REBABJSUk2a6JkZ2czZcoUTpw4gb+/P82aNWP16tX079/fU7fg1Sr5+nJPi1bc06KVp0MRQghRCllJ1pamrrLFMFJTUwkJCSElJeWqmI8ihBCi7MrjOyP/Gt0in8Ng8CvzeXJzM4mLf6XCfL/Jc6ZCCCGE8Doef8xYCCGEEKCZLZszx1ckkqB4iFkp1h46yMLfE/jz9H/4GXzod11DRrduS73KVYo85vUf4/h8TwJZJhMARr2ee1q04ramzYnevZMfjh4h12SmVWgoo1u3pX5IFRb+nmB3NePUrEy+3LuHr/b9jzMXM6gVWIk7m7fkzmYtCPT1devvQwghrnrOPolTwWZsyBwUDzArxeQNa1h14E90mmatmaPXNAw6PQsGD6VTHdvF5AYuXsgfp/8r9px6TbMWBsz/Wa9pKKWsqx/nX2tAw+uZ1XeAzUqyyWkXGPb1Uv5Nu2CNJz+Fua5qNZbeNpwq/v6u+QUIIcQVojznoHS/4Vmn56Bs+fVVmYMiym7x3j2sOvAngE1BP5NS5JhNPPT9t6RnZ1v3f7TjlxKTk/xjL//ZVCA5KXitoqoZT4ldR1KB5AQurftz5NxZXtjygwN3KIQQwmGyUJsNSVDKmVKKz3bvpLhqOWaluJCdzXcH/7Tum/PbLy6Po2A147/OnuHnxOM2SU5BJqVYe/ggp9LTXB6HEEIIC6lmbEsSlHKWlp3NsfPnS0x09ZrGruR/Lx2Tk+PSGC6vZrz7ZNHFGQsyK8XekyddGocQQghRHJkkW87sqSCsoWHQ3J875sdSXM2e4toLIYRwA5kka0O+ccpZgI8PLWuFFvkUTb5cZaZLeIT1dX5NHVfRaRrNatS0VjPuVCe8xHgAfPV62krNIyGEcB8FmJ3YKlZ+IgmKJzzUroPNZNSC9JpG7aAg+jS4zrrvha49XHr9y6sZh1YKYuD1RT96DJYenbubtyTYWPbZ5UIIIUomc1BsSYLiAf2uu57JnboAl4ZXtLytqn8Anw++DR+93tp+YKPGDCqh+rBBp7OZdKvXNDQgKG/tEnuqGb/SozdtQ2sDWBOV/PbdIurxVJeoMtypEEIIUTYyB8VDHrmhEz3rX8uX//ud/f+dwt/gQ9/rGjKkUROC8oZeCnrv5gHc2qgJz23eSHJaGqAIrRTEi9170jasNt/s/x+bjh4h22SiTWht7m7RkpqBleyuZlzJ15fFtw1j09G/iNn/B6fS07gmKJg7mjana0S9UoeAhBBCOEnh5BwUl0XiFWShNiGEEKIY5blQ202tnsKgL/wHqr1yTVls2vNGhfl+kyEeIYQQQngdGeIRQgghvIEZil3F097jKxDpQRFCCCG8gKee4pkzZw7169fHz8+Pdu3asW3btmLbLl++nN69e1OjRg2Cg4OJjIxk/fr1Nm2io6PRNK3Qlpm3OKi9pAfFQ3LNZmZsi+Pr/f8jLTsbDY3rq1Xjua7dWf7nPr4/eIAcsyUdDvDx4ZEOHelwTR0+S9hF/D/HUQo6h4czunVbOtSuU+Q1/j5/ns/37LK7mrEQQoiry7Jly5g4cSJz5syhS5cufPzxx/Tr148//viDunXrFmq/detWevfuzWuvvUblypVZsGABgwYN4pdffqFNmzbWdsHBwRw4cMDmWD8/x5aqkEmyHpBrNtPj8/mcuJDq8LFFVS1+rmt3xrZpZ9Pu1xP/MHplDDkmk7V9SdWMhRBCFFaek2R7NnvC6UmyP+x7y6FYO3bsSNu2bZk7d651X5MmTRgyZAgzZsyw6xzNmjVj+PDhvPDCC4ClB2XixImcP3/e4XsoSL6hPGDy+jVlSk6g6KrFr2zbwu8F6ulczMnhwe+/JbtAcgIlVzMWQgjhYflL3TuzOSA7O5udO3fSp08fm/19+vTh559/tuscZrOZCxcuULVqVZv9aWlpREREUKdOHQYOHEhCQoJDsYEkKOXObDaz7q9DLj2nXtP44vfd1tffHzpAalZWsavVgm01YyGEEBVHamqqzZaVlVVku9OnT2MymahVy3ZtrFq1apGcXHoRWYCZM2eSnp7OsGHDrPsaN25MdHQ0q1atYsmSJfj5+dGlSxcOHXLsu08SlHJ2Mj2dXLNrp1qblOLXE/9YX+9OTsJQwvDN5dWMhRBCeAEX9aCEh4cTEhJi3UobqtEum5OolCq0ryhLlixh+vTpLFu2jJo1a1r3d+rUiXvvvZdWrVrRtWtXvvrqK66//nref/99h34dMkm2nBVcwt6VCiYk9k6AlTkoQgjhRVz0mHFiYqLNHBRjEauTA1SvXh29Xl+ot+TUqVOFelUut2zZMu677z6+/vprevXqVWJbnU5Hhw4dpAfF21UPCMDf4Nq8UK9pdKtX3/r6xroRJfbSXF7NWAghhOe56jHj4OBgm624BMXX15d27doRGxtrsz82NpbOnTsXG+eSJUsYPXo0ixcvZsCAAaXel1KK3bt3ExYW5sBvQxIUj7inRSuXnUvD0j03omVr676e9RsQHhxiLfZ3ucurGQshhLg6TZ48mU8//ZTPPvuM/fv3M2nSJI4fP864ceMAmDp1KiNHjrS2X7JkCSNHjmTmzJl06tSJ5ORkkpOTSUlJsbZ58cUXWb9+PUeOHGH37t3cd9997N6923pOe0mC4gHPdO1O5zqFny8vjQ7b4RudpmHQ6ZjTfxD1K1ex7jfodCwYPJTqAQGAfdWMhRBCeFg5P8UDMHz4cGbNmsVLL71E69at2bp1K2vWrCEiIgKApKQkjh8/bm3/8ccfk5uby/jx4wkLC7NuEyZMsLY5f/48Dz74IE2aNKFPnz6cOHGCrVu3csMNNzgUm6yD4kGrD/7Je79u598LqfjodNxYtx7P3NiN+MTjvP7TVs5ezEDTNCJCKvNW776EBQWz9H97+TnxOApF5/C63NmsJWFBQUWePy072+5qxkIIIQorz3VQejWY6PQ6KBv/muUV32+uIAmKEEIIUQxJUDxHnuIRQgghvEEZh2lsjq9AJEERQgghvIKTCQoVK0GRSbJCCCGE8DrSg+Kg85kX+XLvHr7e9z/OZl4krFIQdzVvybBmLQjw8SnUPi07m+lxP7Dm0EEyc3PRaRqtaoUy9cZuTN/yA3+c/s/a1levZ3LHzszZ+Suply1N3LhaNXLMZv46d85mf72QyrQJDWPFgf02+xtVq8b7fQeweN9eu6sZp2Zl8uXePXy173+cuZhBrcBK3Nm8JXc2a0Ggr68zvzYhhBClkSEeGzJJ1gEnLqQy7OulnExPs9a5yf+ab1S9BktvG0aw8VI56dTMTKKiPyU1u+g6COWtpGrGyWkXGPb1Uv5Nu1Do3q6rWo2ltw2nir+/B6IWQgjPKddJshGPYNA5MUnWnMXGvz+oMJNkZYjHAZPWreZUgeQELCN+Cjh05jQvxm22aT9m1XKvSU6g5GrGU2LXkVQgOYFL93bk3Fle2PJD+QUqhBDiqicJip3+PP0fO5L+xVRMh5NJKb47+CdnMjIAuJCVSUJyUnmG6JCC1Yz/OnuGnxOPl3hvaw8f5FR6WnmGKIQQVxdldn6rQCRBsZM9yUau2cwf/50CIP6fRHeHVGaXVzPefbL0stpmpdh78qSbIxNCiKuYB1aS9WYySdZOjlYI9rkCKgXnx1pczZ7i2gshhHADc/7AujPHVxzyjWOnLuF1S62C7W8w0KpWaF77CLuTmvJ2eTXjTnXCS43VV6+nrYOVKIUQQoiykgTFTnWCQ+jboGGxvQ0acG/L1tbHcX0NBnrWv7YcI7Tf5dWMQysFMfD6oh89BtDQuLt5S5snlIQQQriYDPHYkATFAa/36kuLvB6S/C/z/ISl17UNeDzyRpv2H/a/heuqVC3fIAvQLvtvSdWMX+nRm7ahtYHC99Ytoh5PdYlye7xCCHFVUziZoHj6BlxL5qA4INho5Kvb7yT2yGFW/PkH/6WnUyc4mGFNW9ClbuEhHYNOx7p7RrH4f7/z6a4dnM7IwGgw0LfBdTzdJYr3fvmZRXv3kGO2zLwOq1SJOf1v4b3tP7Hl+N/W82jAxBsiuZCVxad7dtlcY1TLNtxwzTU8EbuOjNxcwJJYjGzVmkmdbrS7mnElX18W3zaMTUf/Imb/H5xKT+OaoGDuaNqcrhH1vHa4SgghRMUkC7UJIYQQxSjXhdpCH8SgK/uq3bnmbDYmz6sw32/SgyKEEEJ4A7MZcGItE7OsgyKEEEII4VbSgyKEEEJ4AykWaEMSFBfJyMlh2b69LPnfHpLT0qjmH8DtTZtzT4uWVPZzrMjeB7/GE717F2czM9GA8JAQpkTeSGpWFh/8up2T6WkooFZgJR7ucAMjWrZxyz0JIYQoR5Kg2JBJsi6QkpnJnTHLOHjmNHDpSS+dphFaqRJf3X4ntYPsu9ZtXy12uIZP72sb8PHAIQ4dI4QQonTlOkm2+ljnJ8me/qzCTJKVOSguMD3uBw6fPWOt/pvPrBQn09KYtH6tXeeZtf3nMhUYjD3yF8v373P4OCGEEF7ErJzfKhBJUJx0OiOD7w8eKLES8G///mPtXSnJ55etceKI2b/Gl/lYIYQQnqeU2emtIpEExUn7Tp0sNjkpKCHp31LbpGRllTmOE6mpZT5WCCGEF1BO9p5UsBkbkqA4SafzjkrAmqz0KoQQogKRBMVJbUJr42co+WEoDYgMr1vquUIDK5U5joZVq5X5WCGEEF5AigXakATFSZV8fbmnRSuK67/Qaxr9rruea+x4imdCx8gyx/H0jVLMTwghrmhms/NbBSIJigs80bkrN9W/FrhUATi/uF7LWqHM6NnHrvMMb96S25o0c/j6D7e/ga516zl8nBBCCOGtZKE2F/DV6/l44BB+PP43X/+xl39SU6kRGMjQxs3odW0DDA7MP3mr980MadSEN3/expFzZ9FpGu3CavNcVHfSs3N4dVscf/x3CoWiaY2aPHNjN1qFhrnx7oQQQpQLdfliFWU5vuKQBMVFdJpGVEQ9oiLqOX2uLnUjWFk3osj3lt4+3OnzCyGE8D7KbEZpZR+mkceMhRBCCCHcTHpQhBBCCG8gQzw2JEERQgghvIFZgSYJSj4Z4hFCCCGE1/F4gjJnzhzq16+Pn58f7dq1Y9u2bSW2j4uLo127dvj5+XHttdfy0UcflVOkQgghhBspBcrsxCY9KC6zbNkyJk6cyLPPPktCQgJdu3alX79+HD9+vMj2R48epX///nTt2pWEhASeeeYZHnvsMWJiYso5ciGEEMK1lFk5vVUkHk1Q3nnnHe677z7uv/9+mjRpwqxZswgPD2fu3LlFtv/oo4+oW7cus2bNokmTJtx///2MHTuWt99+u5wjF0IIIVzMqd6TvK0M3DGSERMTQ9OmTTEajTRt2pQVK1Y4HJfHEpTs7Gx27txJnz62q6z26dOHn3/+uchj4uPjC7Xv27cvO3bsICcnp8hjsrKySE1NtdmEEEII4Z6RjPj4eIYPH86IESPYs2cPI0aMYNiwYfzyyy8OxeaxBOX06dOYTCZq1apls79WrVokJycXeUxycnKR7XNzczl9+nSRx8yYMYOQkBDrFh4e7pobEEIIIVzIE0M87hjJmDVrFr1792bq1Kk0btyYqVOn0rNnT2bNmuVQbB6fJKtptmX2lFKF9pXWvqj9+aZOnUpKSop1S0xMdDJiIYQQwg3KeYjHXSMZxbUp7pzF8dg6KNWrV0ev1xfqLTl16lShXpJ8oaGhRbY3GAxUq1atyGOMRiNGo9H6Oj+hkaEeIYQQpcn/rlDl8IRMLjlOrdOWiyVBuPz77fLvwXzuGMkICwsrtk1x5yyOxxIUX19f2rVrR2xsLLfeeqt1f2xsLIMHDy7ymMjISL777jubfRs2bKB9+/b4+PjYdd0LFy4AyFCPEEIIu124cIGQkBC3nNvX15fQ0FB+TF7j9LkqVapU6Ptt2rRpTJ8+vdhj3DGS4eg5i+LRlWQnT57MiBEjaN++PZGRkcybN4/jx48zbtw4wDI8c+LECRYuXAjAuHHj+OCDD5g8eTIPPPAA8fHxzJ8/nyVLlth9zdq1a5OYmEhQUJDDv6yCUlNTCQ8PJzExkeDg4DKf50pzNd633LPcc0Ul91z6PSuluHDhArVr13ZbTH5+fhw9epTs7Gynz1VUIlBU7wm4bySjuDbFnbM4Hk1Qhg8fzpkzZ3jppZdISkqiefPmrFmzhogISyXfpKQkm5nE9evXZ82aNUyaNIkPP/yQ2rVrM3v2bG677Ta7r6nT6ahTp47L7iE4OPiq+T92QVfjfcs9Xx3knq8Ojtyzu3pOCvLz88PPz8/t1ynIXSMZkZGRxMbGMmnSJJs2nTt3dixAJcokJSVFASolJcXToZSrq/G+5Z6vDnLPV4er8Z5LsnTpUuXj46Pmz5+v/vjjDzVx4kQVGBiojh07ppRS6umnn1YjRoywtj9y5IgKCAhQkyZNUn/88YeaP3++8vHxUd988421zU8//aT0er16/fXX1f79+9Xrr7+uDAaD2r59u0OxSbFAIYQQ4irljpGMzp07s3TpUp577jmef/55GjRowLJly+jYsaNDsUmCUkZGo5Fp06YVO7ZXUV2N9y33fHWQe746XI33XJqHH36Yhx9+uMj3oqOjC+3r1q0bu3btKvGct99+O7fffrtTcWlKVbDqQkIIIYS44nl8oTYhhBBCiMtJgiKEEEIIryMJihBCCCG8jiQoQgghhPA6kqCUwdatWxk0aBC1a9dG0zS+/fZbT4fkVjNmzKBDhw4EBQVRs2ZNhgwZwoEDBzwdllvNnTuXli1bWhdzioyMZO3atZ4Oq1zNmDEDTdOYOHGip0Nxq+nTp6Npms0WGhrq6bDc7sSJE9x7771Uq1aNgIAAWrduzc6dOz0dltvUq1ev0L+zpmmMHz/e06GJYkiCUgbp6em0atWKDz74wNOhlIu4uDjGjx/P9u3biY2NJTc3lz59+pCenu7p0NymTp06vP766+zYsYMdO3Zw0003MXjwYPbt2+fp0MrFb7/9xrx582jZsqWnQykXzZo1Iykpybrt3bvX0yG51blz5+jSpQs+Pj6sXbuWP/74g5kzZ1K5cmVPh+Y2v/32m82/cWxsLAB33HGHhyMTxZF1UMqgX79+9OvXz9NhlJt169bZvF6wYAE1a9Zk586dREVFeSgq9xo0aJDN61dffZW5c+eyfft2mjVr5qGoykdaWhr33HMPn3zyCa+88oqnwykXBoPhqug1yffGG28QHh7OggULrPvq1avnuYDKQY0aNWxev/766zRo0IBu3bp5KCJRGulBEQ5LSUkBoGrVqh6OpHyYTCaWLl1Keno6kZGRng7H7caPH8+AAQPo1auXp0MpN4cOHaJ27drUr1+fO++8kyNHjng6JLdatWoV7du354477qBmzZq0adOGTz75xNNhlZvs7GwWLVrE2LFjnSoaK9xLEhThEKUUkydP5sYbb6R58+aeDset9u7dS6VKlTAajYwbN44VK1bQtGlTT4flVkuXLmXXrl3MmDHD06GUm44dO7Jw4ULWr1/PJ598QnJyMp07d+bMmTOeDs1tjhw5wty5c2nYsCHr169n3LhxPPbYY9bK8RXdt99+y/nz5xk9erSnQxElkCEe4ZBHHnmE33//nR9//NHTobhdo0aN2L17N+fPnycmJoZRo0YRFxdXYZOUxMREJkyYwIYNG8q9qqonFRyubdGiBZGRkTRo0IDPP/+cyZMnezAy9zGbzbRv357XXnsNgDZt2rBv3z7mzp3LyJEjPRyd+82fP59+/fpRu3ZtT4ciSiA9KMJujz76KKtWrWLz5s3UqVPH0+G4na+vL9dddx3t27dnxowZtGrVivfee8/TYbnNzp07OXXqFO3atcNgMGAwGIiLi2P27NkYDAZMJpOnQywXgYGBtGjRgkOHDnk6FLcJCwsrlGg3adLEpihcRfX333+zceNG7r//fk+HIkohPSiiVEopHn30UVasWMGWLVuoX7++p0PyCKUUWVlZng7DbXr27Fno6ZUxY8bQuHFjnnrqKfR6vYciK19ZWVns37+frl27ejoUt+nSpUuhpQIOHjxorWBbkeVP8h8wYICnQxGlkASlDNLS0jh8+LD19dGjR9m9ezdVq1albt26HozMPcaPH8/ixYtZuXIlQUFBJCcnAxASEoK/v7+Ho3OPZ555hn79+hEeHs6FCxdYunQpW7ZsKfREU0USFBRUaF5RYGAg1apVq9DzjaZMmcKgQYOoW7cup06d4pVXXiE1NZVRo0Z5OjS3mTRpEp07d+a1115j2LBh/Prrr8ybN4958+Z5OjS3MpvNLFiwgFGjRmEwyNef11PCYZs3b1ZAoW3UqFGeDs0tirpXQC1YsMDTobnN2LFjVUREhPL19VU1atRQPXv2VBs2bPB0WOWuW7duasKECZ4Ow62GDx+uwsLClI+Pj6pdu7YaOnSo2rdvn6fDcrvvvvtONW/eXBmNRtW4cWM1b948T4fkduvXr1eAOnDggKdDEXbQlFLKM6mREEIIIUTRZJKsEEIIIbyOJChCCCGE8DqSoAghhBDC60iCIoQQQgivIwmKEEIIIbyOJChCCCGE8DqSoAghhBDC60iCIsRVYMuWLWiaxvnz54tto2ka3377bbnFVJLp06fTunVrT4chhPAgSVCEuIJER0dTuXJlT4fhUt6UGAkhvIckKEIIIYTwOpKgCFFOunfvziOPPMIjjzxC5cqVqVatGs899xwFq01kZ2fz5JNPcs011xAYGEjHjh3ZsmULYBmmGTNmDCkpKWiahqZpTJ8+HYBFixbRvn17goKCCA0N5e677+bUqVNOxXvixAmGDx9OlSpVqFatGoMHD+bYsWPW90ePHs2QIUN4++23CQsLo1q1aowfP56cnBxrm6SkJAYMGIC/vz/169dn8eLF1KtXj1mzZgFQr149AG699VY0TbO+zvfFF19Qr149QkJCuPPOO7lw4YJT9ySEuHJIgiJEOfr8888xGAz88ssvzJ49m3fffZdPP/3U+v6YMWP46aefWLp0Kb///jt33HEHN998M4cOHaJz587MmjWL4OBgkpKSSEpKYsqUKYAlsXn55ZfZs2cP3377LUePHmX06NFljjMjI4MePXpQqVIltm7dyo8//kilSpW4+eabyc7OtrbbvHkzf/31F5s3b+bzzz8nOjqa6Oho6/sjR47k33//ZcuWLcTExDBv3jybxOm3334DYMGCBSQlJVlfA/z11198++23fP/993z//ffExcXx+uuvl/mehBBXGA8XKxTiqtGtWzfVpEkTZTabrfueeuop1aRJE6WUUocPH1aapqkTJ07YHNezZ081depUpZRSCxYsUCEhIaVe69dff1WAunDhglLqUgXuc+fOFXsMoFasWKGUUmr+/PmqUaNGNrFmZWUpf39/tX79eqWUUqNGjVIREREqNzfX2uaOO+5Qw4cPV0optX//fgWo3377zfr+oUOHFKDefffdIq+bb9q0aSogIEClpqZa9z3xxBOqY8eOpd67EKJikB4UIcpRp06d0DTN+joyMpJDhw5hMpnYtWsXSimuv/56KlWqZN3i4uL466+/SjxvQkICgwcPJiIigqCgILp37w7A8ePHyxTnzp07OXz4MEFBQdY4qlatSmZmpk0szZo1Q6/XW1+HhYVZe0gOHDiAwWCgbdu21vevu+46qlSpYlcM9erVIygoqMhzCyEqPoOnAxBCWJjNZvR6PTt37rT50geoVKlSscelp6fTp08f+vTpw6JFi6hRowbHjx+nb9++NsMxjsbSrl07vvzyy0Lv1ahRw/qzj4+PzXuapmE2mwFs5tYUVNz+y5V0biFExScJihDlaPv27YVeN2zYEL1eT5s2bTCZTJw6dYquXbsWebyvry8mk8lm359//snp06d5/fXXCQ8PB2DHjh1Oxdm2bVuWLVtGzZo1CQ4OLtM5GjduTG5uLgkJCbRr1w6Aw4cPF1qLxcfHp9A9CSGEDPEIUY4SExOZPHkyBw4cYMmSJbz//vtMmDABgOuvv5577rmHkSNHsnz5co4ePcpvv/3GG2+8wZo1awDLsEdaWho//PADp0+fJiMjg7p16+Lr68v777/PkSNHWLVqFS+//LJTcd5zzz1Ur16dwYMHs23bNo4ePUpcXBwTJkzgn3/+sescjRs3plevXjz44IP8+uuvJCQk8OCDD+Lv728zzFWvXj1++OEHkpOTOXfunFNxCyEqDklQhChHI0eO5OLFi9xwww2MHz+eRx99lAcffND6/oIFCxg5ciSPP/44jRo14pZbbuGXX36x9ox07tyZcePGMXz4cGrUqMGbb75JjRo1iI6O5uuvv6Zp06a8/vrrvP32207FGRAQwNatW6lbty5Dhw6lSZMmjB07losXLzrUo7Jw4UJq1apFVFQUt956Kw888ABBQUH4+flZ28ycOZPY2FjCw8Np06aNU3ELISoOTdk7ICyEcEr37t1p3bq1dQ2Qq9E///xDeHg4GzdupGfPnp4ORwjhxWQOihDCbTZt2kRaWhotWrQgKSmJJ598knr16hEVFeXp0IQQXk4SFCGE2+Tk5PDMM89w5MgRgoKC6Ny5M19++WWhJ3SEEOJyMsQjhBBCCK8jk2SFEEII4XUkQRFCCCGE15EERQghhBBeRxIUIYQQQngdSVCEEEII4XUkQRFCCCGE15EERQghhBBeRxIUIYQQQngdSVCEEEII4XX+H0SC9B3030BJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plt.scatter(df['petal length (cm)'], df['petal width (cm)'], c = y_km)\n", "plt.colorbar()\n", "plt.xlabel('petal length')\n", "plt.ylabel('petal width')\n", "plt.title('K-means clustering')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "77a3fe53-57f5-425a-80b7-203c534cc211", "metadata": {}, "source": [ "### PCA(主成分分析)次元削減\n", "\n", "高次元のデータの次元数を削減するために用いられることも多いです。\n", "\n", "ここでは、irisデータの4つの特徴量を2次元にPCAを用いて削減します。" ] }, { "cell_type": "code", "execution_count": 5, "id": "7104c1d7-d363-47e2-b610-d401d0107d45", "metadata": {}, "outputs": [], "source": [ "X = df.iloc[:, :4]\n", "y = df['species']" ] }, { "cell_type": "markdown", "id": "3ff047ec-05f0-4e7b-9604-b705cd52329a", "metadata": {}, "source": [ "PCAを実行する前に標準化します。" ] }, { "cell_type": "code", "execution_count": 6, "id": "81f42393-32d7-49f8-9c4a-528e952397fb", "metadata": {}, "outputs": [], "source": [ "X = StandardScaler().fit_transform(X)" ] }, { "cell_type": "code", "execution_count": 7, "id": "9e61deff-5b30-4a95-a716-43de359c9eb1", "metadata": {}, "outputs": [], "source": [ "pca = PCA(n_components=2)\n", "X_pca = pca.fit_transform(X)" ] }, { "cell_type": "code", "execution_count": 8, "id": "4640cc5d-78da-48c0-b9be-ce13dc36c527", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[-2.26470281, 0.4800266 ],\n", " [-2.08096115, -0.67413356]])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_pca[:2,:]" ] }, { "cell_type": "code", "execution_count": 9, "id": "28687c1a-42ab-40dc-822f-dfb34c7d77b7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[-0.90068117, 1.01900435, -1.34022653, -1.3154443 ],\n", " [-1.14301691, -0.13197948, -1.34022653, -1.3154443 ]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X[:2,:]" ] }, { "cell_type": "markdown", "id": "e79e3dda-2ad8-430b-b6c8-e7275596c363", "metadata": {}, "source": [ "どのくらいデータを説明できているか、寄与率(explained_variance_ratio)を用いて確認します。\n", "\n", "PCAの説明分散(または固有値)は、各主成分に帰属させることができる分散を示します。\n", "各値は各主成分の分散に等しく、配列の長さは n_components で定義された成分の数に等しくなります。" ] }, { "cell_type": "code", "execution_count": 10, "id": "db8ec47c-045c-4bca-a420-5e1942b4689e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.72962445 0.22850762]\n" ] } ], "source": [ "print(pca.explained_variance_ratio_)" ] }, { "cell_type": "markdown", "id": "9498ed5c-1815-45ef-85b0-bd1f428b37d0", "metadata": {}, "source": [ "第一主成分と第二主成分をプロットしましょう。" ] }, { "cell_type": "code", "execution_count": 11, "id": "3767a670-5bd7-4466-b47b-218aea833145", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGxCAYAAABfrt1aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+T0lEQVR4nO3deXxcZdn4/885s6dZ2iRtmqZbCm1AITQti0CREoSCgigq8IAKwgNl9augtYiUTW3gB/jw8AgtKFSUTWXTIpRCACkFgZIahRKBpgtp2jRNmkwy+5z798fJTLNMkplkJjNJrvfrldeQmTNn7pmUnCv3fd3XpSmlFEIIIYQQaaCnewBCCCGEGL8kEBFCCCFE2kggIoQQQoi0kUBECCGEEGkjgYgQQggh0kYCESGEEEKkjQQiQgghhEgbCUSEEEIIkTYSiAghhBAibSQQEWKY1qxZg6Zp0S+r1cr06dP53ve+R0NDQ5/jt27dytVXX828efNwuVxkZWXx+c9/np/97Gcxjwc4++yz0TSNq6++OiXvoaWlhfPOO48pU6agaRpf+9rX+j128eLFHHbYYT3umz17do/PYMKECSxYsID/+7//o3fx5tdeew1N0/jzn//c4/5//OMffP3rX2fmzJk4HA6Kioo49thjue6664b8vi666CJmz549pOfed999rFmzZsivnWy//OUvefbZZ9M9DCGSTgIRIZLk4Ycf5q233mL9+vVceumlPP7445xwwgl0dnZGj1m7di3l5eWsXbuWyy67jLVr10b/+69//StnnHFGn/M2NTWxdu1aAB599FF8Pl/Sx37bbbfxzDPP8Ktf/Yq33nqLO+64I+FzHH/88bz11lu89dZb/P73vycrK4trrrmGlStXDvrc559/nuOOO4729nbuuOMOXnrpJe655x6OP/54nnzyyaG8pWGTQESIkWFN9wCEGCsOO+wwjjzySABOOukkwuEwt912G88++ywXXHAB9fX1nHfeecybN49XX32VvLy86HMrKyv5/ve/zzPPPNPnvI888gjBYJCvfOUrPP/88zz99NOcf/75SR37v//9bw466CAuuOCCIZ9j4sSJfOELX4h+/6UvfYmZM2eyevVqfvrTnw743DvuuIPS0lLWrVuH1Xrg19J55503pKBICDF6yIyIECkSuShv374dgLvvvpvOzk7uu+++HkFIhKZpnH322X3uf+ihhygqKuJ3v/sdLpeLhx56KO4xtLS0cOWVV1JSUoLdbmfOnDnccMMN+P1+ALZt24amabz88sts2bIlurTy2muvDeEd95Sbm8u8efPYs2fPoMfu27ePwsLCHkFIhK7H92tqzZo1lJWV4XA4OPTQQ3nkkUdiHnfLLbdwzDHHkJ+fT25uLgsWLOC3v/1tjyWk2bNn88EHH/D6669HP5PIEo/P5+O6665j/vz55OXlkZ+fz7HHHstzzz3X57X+9Kc/ccwxx5CXl0dWVhZz5szh4osv7nFMe3s7P/rRjygtLcVut1NSUsIPfvCDHjNpmqbR2dnJ7373u+h4Fi9eHNfnIkSmkxkRIVLkk08+AWDy5MkAvPTSSxQVFfWYNRjMxo0b2bJlCz/+8Y8pKCjgG9/4Bo8++ij19fWUlpYO+Fyfz8dJJ53Ep59+yi233EJ5eTlvvPEGK1euZPPmzTz//PMUFxfz1ltvceWVV9LW1sajjz4KwOc+97khvusDQqEQO3fuZN68eYMee+yxx/Kb3/yG73//+1xwwQUsWLAAm80W92utWbOG733ve5x11lncddddtLW1cfPNN+P3+/sEMtu2bWPp0qXMnDkTgLfffptrrrmGhoYGVqxYAcAzzzzDN7/5TfLy8rjvvvsAcDgcAPj9flpaWvjRj35ESUkJgUCAl19+mbPPPpuHH36Y7373uwC89dZbnHvuuZx77rncfPPNOJ1Otm/fTnV1dXQsHo+HE088kc8++4yf/vSnlJeX88EHH7BixQr+9a9/8fLLL6NpGm+99RaVlZWcdNJJ3HjjjYAZ6AkxJighxLA8/PDDClBvv/22CgaDyu12q7Vr16rJkyernJwctXv3bqWUUk6nU33hC19I6NwXX3yxAtSWLVuUUkq9+uqrClA33njjoM9dtWqVAtQf//jHHvfffvvtClAvvfRS9L4TTzxRff7zn49rTLGOnTVrlvryl7+sgsGgCgaDavv27erSSy9VNptNrV27tsexkffwpz/9KXpfc3OzWrRokQIUoGw2mzruuOPUypUrldvtHnA84XBYTZs2TS1YsEAZhhG9f9u2bcpms6lZs2YN+NxgMKhuvfVWVVBQ0OP5n//859WJJ5446OcRCoVUMBhUl1xyiaqoqIjef+eddypA7d+/v9/nrly5Uum6rt59990e9//5z39WgPrb3/4WvW/ChAnqwgsvHHQ8Qow2sjQjRJJ84QtfwGazkZOTwxlnnMHUqVN54YUXKCoqGtL5Ojo6+OMf/8hxxx3HIYccAsCJJ57IQQcdxJo1azAMY8DnV1dXM2HCBL75zW/2uP+iiy4C4JVXXhnSuPrzt7/9DZvNhs1mY9asWTz44IPce++9fOUrXxn0uQUFBbzxxhu8++67VFVVcdZZZ/Gf//yH66+/nsMPP5zm5uZ+n1tXV8euXbs4//zz0TQtev+sWbM47rjj+hxfXV3Nl770JfLy8rBYLNhsNlasWMG+fftoamqK673+6U9/4vjjjyc7Oxur1YrNZuO3v/0tW7ZsiR5z1FFHAXDOOefwxz/+MeaOqLVr13LYYYcxf/58QqFQ9GvJkiVJWyITItNJICJEkjzyyCO8++671NTUsGvXLmprazn++OOjj8+cOZP6+vq4z/fkk0/S0dHBOeecw/79+9m/fz9tbW2cc8457Ny5k/Xr1w/4/H379jF16tQeF2eAKVOmYLVa2bdvX2JvcBCLFi3i3Xff5e233+b3v/89s2fP5uqrr2bDhg1xn+PII4/kJz/5CX/605/YtWsXP/zhD9m2bduACauR9zF16tQ+j/W+75133uHUU08F4MEHH+TNN9/k3Xff5YYbbgDA6/UOOsann36ac845h5KSEv7whz/w1ltv8e6773LxxRf32NH0xS9+kWeffZZQKMR3v/tdpk+fzmGHHcbjjz8ePWbPnj3U1tZGA7jIV05ODkqpAQMwIcYKyRERIkkOPfTQ6K6ZWJYsWcK9997L22+/HVeeyG9/+1sAfvCDH/CDH/wg5uNLlizp9/kFBQX84x//QCnVIxhpamoiFApRWFg46BgSkZeXF33/xxxzDMcccwxHHHEEV155JZs3b4476TTCZrNx00038atf/Yp///vf/R5XUFAAwO7du/s81vu+J554ApvNxtq1a3E6ndH7E9kW+4c//IHS0lKefPLJHp9rJAG4u7POOouzzjoLv9/P22+/zcqVKzn//POZPXs2xx57LIWFhQMmICf7ZyREJpIZESFGyA9/+EMmTJgQTQztTSkV3b67ZcsW3nrrLb7xjW/w6quv9vk6+eSTee655wac1Tj55JPp6Ojoc5GN7CY5+eSTk/fmYpg7dy7Lli3jX//616C1QBobG2PeH1nqmDZtWr/PLSsro7i4mMcff7zHzpft27ezcePGHsdGCs5ZLJbofV6vl9///vd9zutwOGLOkGiaht1u7xGE7N69O+aume7nOvHEE7n99tsBqKmpAeCMM87g008/paCggCOPPLLPV/dibP2NR4jRTmZEhBghpaWlPPHEE5x77rnMnz+fq6++moqKCgA+/PBDHnroIZRSfP3rX4/Ohixbtoyjjz66z7ncbjevvPIKf/jDH/h//+//xXy97373u/z617/mwgsvZNu2bRx++OFs2LCBX/7yl3z5y1/mS1/6UurebJcf/ehHrFq1iltuuYVzzjmnRwDQ3ZIlS5g+fTpnnnkmhxxyCIZhsHnzZu666y6ys7P7fY9gbu+97bbb+O///m++/vWvc+mll7J//35uvvnmPkszX/nKV7j77rs5//zzueyyy9i3bx933nlndEdMd4cffjhPPPEETz75JHPmzMHpdHL44Ydzxhln8PTTT3PllVfyzW9+k507d3LbbbdRXFzMxx9/HH3+ihUr+Oyzzzj55JOZPn06+/fv55577sFms3HiiScC5mzXU089xRe/+EV++MMfUl5ejmEY7Nixg5deeonrrruOY445Jjqe1157jb/+9a8UFxeTk5NDWVlZwj8TITJOWlNlhRgDIrtmeu986M+nn36qrrzySnXwwQcrh8OhXC6X+tznPqeuvfZaVV9frwKBgJoyZYqaP39+v+cIhUJq+vTp6vDDDx/wtfbt26cuv/xyVVxcrKxWq5o1a5a6/vrrlc/n63FcMnbNfOUrX4l5/K9//WsFqN/97ndKqdi7Zp588kl1/vnnq7lz56rs7Gxls9nUzJkz1Xe+8x314YcfxjWu3/zmN2ru3LnKbrerefPmqYceekhdeOGFfXbNPPTQQ6qsrEw5HA41Z84ctXLlSvXb3/5WAaq+vj563LZt29Spp56qcnJyFNDjPFVVVWr27NnK4XCoQw89VD344IPqpptuUt1/pa5du1adfvrpqqSkRNntdjVlyhT15S9/Wb3xxhs9xtPR0aF+9rOfqbKyMmW321VeXp46/PDD1Q9/+MPojiullNq8ebM6/vjjVVZWlgLi2tEjxGigKdWrEYQQQgghxAiRHBEhhBBCpI0EIkIIIYRIGwlEhBBCCJE2EogIIYQQIm0kEBFCCCFE2kggIoQQQoi0yeiCZoZhsGvXLnJycvr0yxBCCCFEZlJK4Xa7mTZt2qDtHTI6ENm1axczZsxI9zCEEEIIMQQ7d+5k+vTpAx6T0YFITk4OYL6R3NzcNI9GCCGEEPFob29nxowZ0ev4QDI6EIksx+Tm5kogIoQQQowy8aRVSLKqEEIIIdJGAhEhhBBCpI0EIkIIIYRIGwlEhBBCCJE2EogIIYQQIm0kEBFCCCFE2kggIoQQQoi0kUBECCGEEGmT0QXNxhvDUNTUNNLc7KGwMIuKimJ0XXrsCCGEGLskEMkQ1dX1VFVtoK6umUDAwG7XKSsrZPnyRVRWlqZ7eEIIIURKyNJMBqiurmfp0rXU1u4hO9tOcXE22dl2amv3sHTpWqqr69M9RCGEECIlJBBJM8NQVFVtwO32U1KSg8tlQ9c1XC4bJSU5uN1+qqo2YBgq3UMVQgghkk4CkTSrqWmkrq6ZggJXn+ZAmqaRn++irq6ZmprGNI1QCCFGEWXAnk2wbZ15q4x0j0gMQnJE0qy52UMgYOBwxP5ROJ1WWlt9NDd7RnhkQggxyuyohneqoKUOwgGw2CG/DI5eDjMr0z060Q+ZEUmzwsIs7HYdvz8U83GfL4TdrlNYmDXCIxNCiFFkRzWsXwp7a8GWDdnF5u3eWvP+HdXpHqHohwQiaVZRUUxZWSH79nlRqmceiFKKlhYvZWWFVFQUp2mEQgiR4ZRhzoQE3JBdAjYXaLp5m11i3v9OlSzTZCgJRNJM1zWWL19ETo6DhgY3Hk8Qw1B4PEEaGtzk5jpYvnyR1BMRQoj+NNWYyzHOAuiVa4emgTPffLypJj3jEwOSQCQDVFaWsnr1GZSXF9HZGaCxsYPOzgDl5UWsWnWG1BERQoiBeJvNnBCrI/bjVicYAfM4kITWDCPJqhmisrKUxYtnS2VVIYRIlKvQTEwN+c3lmN5CPtDt5nGS0JpxJBDJILqusXDhtHQPQwghRpcpFWYwsbcWrCU9l2eUAl8LTC4HXyu8fIWZM+IsAJfDDF4iCa2nrJZgJA1kaUYIIcTopunmjIY9BzoaIOgxl1uCHvN7ey4ctQzevUMSWjOQBCJCCCFGv5mV5ozG5HIIdkJno3k7uRxOWQXOSZLQmqFkaUYIIcTYMLMSZiw2gwlvs5kTMqXCnPnYts7MCXENkNDqbz2Q0CpGjAQiQgghxg5Nh6KFfe9PJKFVjChZmhFCCDH2RRJaffvMBNbuIgmt+WXmcWJESSAihBBi7IsnofXo5eZxYkTJJy6EEGJ8GCyhVbbupoXkiAghhBg/BkpoFWkhgYgQQojxpb+EVpEWEgIKIYQQIm0kEBFCCCFE2kggIoQQQoi0kUBECCGEEGkjgYgQQggh0kYCESGEEEKkjQQiQgghhEgbCUSEEEIIkTYSiAghhBAibSQQEUIIIUTaSCAihBBCiLSRQEQIIYQQaSOBiBBCCCHSRrrvpoBhKGpqGmlu9lBYmEVFRTG6rqV7WEIIIUTGkUAkyaqr66mq2kBdXTOBgIHdrlNWVsjy5YuorCxN9/CEEEKIjCJLM0lUXV3P0qVrqa3dQ3a2neLibLKz7dTW7mHp0rVUV9ene4hCCCFERpFAJEkMQ1FVtQG3209JSQ4ulw1d13C5bJSU5OB2+6mq2oBhqHQPVQghhMgYEogkSU1NI3V1zRQUuNC0nvkgmqaRn++irq6ZmprGNI1QCCGEyDwSiCRJc7OHQMDA4YidduN0WgkEDJqbPSM8MiGEECJzSSCSJIWFWdjtOn5/KObjPl8Iu12nsDBrhEcmhBBCZC4JRJKkoqKYsrJC9u3zolTPPBClFC0tXsrKCqmoKE7TCIUQQojMI4FIkui6xvLli8jJcdDQ4MbjCWIYCo8nSEODm9xcB8uXL5J6IkIIIUQ3EogkUWVlKatXn0F5eRGdnQEaGzvo7AxQXl7EqlVnSB0RIYQQohcpaJZklZWlLF48WyqrCiGEEHFI6YzIypUrOeqoo8jJyWHKlCl87Wtfo66uLpUvmRF0XWPhwmksWXIwCxdOkyBECCGE6EdKA5HXX3+dq666irfffpv169cTCoU49dRT6ezsTOXLCiGEEGKU0FTvLR4ptHfvXqZMmcLrr7/OF7/4xUGPb29vJy8vj7a2NnJzc0dghEIIIYQYrkSu3yOaI9LW1gZAfn5+zMf9fj9+vz/6fXt7+4iMSwghhBDpMWK7ZpRSXHvttSxatIjDDjss5jErV64kLy8v+jVjxoyRGp4QQojRShmwZxNsW2feKiPdIxIJGLGlmauuuornn3+eDRs2MH369JjHxJoRmTFjhizNCCGEiG1HNbxTBS11EA6AxQ75ZXD0cphZme7RjVsZtzRzzTXX8Je//IW///3v/QYhAA6HA4fDMRJDEkIIMdrtqIb1SyHgBmcBuBwQ8sPeWvP+U1ZLMDIKpDQQUUpxzTXX8Mwzz/Daa69RWioFvRJhGErqkQghRCzKMGdCAm7ILoFI13ObC6wl0NFgPj5jMWhSuzOTpTQQueqqq3jsscd47rnnyMnJYffu3QDk5eXhcrlS+dKjXnV1PVVVG6irayYQMLDbdcrKClm+fJFUaBVCiKYacznGWXAgCInQNHDmm4831UDRwvSMUcQlpWHi/fffT1tbG4sXL6a4uDj69eSTT6byZUe96up6li5dS23tHrKz7RQXZ5Odbae2dg9Ll66luro+3UMUQoj08jabOSHWfpbzrU4wAuZxIqOlfGlGJMYwFFVVG3C7/ZSU5KB1Rfoul42SEisNDW6qqjawePFsWaYRQoxfrkIzMTXkN5djegv5QLebx4mMJgtnGaamppG6umYKClzRICRC0zTy813U1TVTU9OYphEKIUQGmFJh7o7x7YPef/QqBb4W8/EpFekZn4ibBCJxMAzFpk27WLfuEzZt2oVhpG6mp7nZQyBg4HDEnqxyOq0EAgbNzZ6UjUEIITKepptbdO05ZmJq0GMmsAY95vf2XPNxSVTNeNJ9dxAjnTRaWJiF3a7j94dwuWx9Hvf5QtjtOoWFWUl/bSGEGFVmVppbdCN1RPyt5nLM5HKpIzKKSCAygEjSqNvtp6DAhcNhxe8PRZNGV68+I+nBSEVFMWVlhdTW7qGkxNpjeUYpRUuLl/LyIioqipP6ukIIMSrNrDS36DbVmImprkJzOUZmQkYN+Un1o3fSqMtlQ9e1rqTRHNxuP1VVG5K+TKPrGsuXLyInx0FDgxuPJ4hhKDyeIA0NbnJzHSxfvkgSVYUQIkLTzS26s5eYtxKEjCry0+pHOpNGKytLWb36DMrLi+jsDNDY2EFnZ4Dy8iJWrUr+LIwQQgiRLrI00494kkZbW30pSxqtrCxl8eLZUllVCCHEmCaBSD8yIWlU1zUWLpyWsvMLIYQQ6SZLM/2IJI3u2+ftU5gtkjRaVlYoSaNCCCHEMEgg0g9JGhVCCCFSTwKRAUjSqBBCCJFakiMyCEkaFUIIIVJHApE4SNKoEEIIkRqyNCOEEEKItJFARAghhBBpI4GIEEIIIdJGAhEhhBBCpI0EIkIIIYRIGwlEhBBCCJE2EogIIYQQIm2kjkgGMwwVVyG1eI8TQgghMo0EIhmqurqeqqoN1NU1EwgY2O06ZWWFLF++qEdp+XiPE0IIITKRLM1koOrqepYuXUtt7R6ys+0UF2eTnW2ntnYPS5eupbq6PqHjhBBCiEwlgUiGMQxFVdUG3G4/JSU5uFw2dF3D5bJRUpKD2+2nqmoDoZAR13GGodL9loQQQoh+SSCSYWpqGqmra6agwIWm9czz0DSN/HwXdXXNPPHEv+I6rqamcSSHL4QQQiREckQyTHOzh0DAwOGI/aNxOq20tvrYvr0truOamz0xH5cEVyGEEJlAApEMU1iYhd2u4/eHcLlsfR73+ULY7TqzZuXFdVxhYVafxyTBVQghRKaQpZkMU1FRTFlZIfv2eVGqZ36HUoqWFi9lZYWcd97hcR1XUVHc4zFJcBVCCJFJJBDJMLqusXz5InJyHDQ0uPF4ghiGwuMJ0tDgJjfXwfLli7Ba9biO677cEm8irCS4CiGEGCkSiGSgyspSVq8+g/LyIjo7AzQ2dtDZGaC8vIhVq86ILp/Ee1xEvImwkuAqhBBipEiOSIaqrCxl8eLZgyaUxnscxJ8I21+CqxBCCJFsEohkMF3XWLhwWtKOizcRNlaCqxBCCJEKsjQzjsSbCNs7wVUIIYRIFQlExpF4E2GlnogQQoiRIoHIOJNogqsQQgiRSpIjMg4lkuAqhBBCpJIEIuNUvAmuQgghRCrJ0owQQggh0kYCESGEEEKkjQQiQgghhEgbCUSEEEIIkTYSiAghhBAibWTXzChjGEq23QohhBgzJBAZId0DiPx8FwAtLd6Egonq6nqqqjZQV9dMIGBgt+uUlRWyfPkiKUQmhBBiVJJAZAR0DyA6OgJ4PEGUgqwsGzk59riCierqepYuXYvb7aegwIXDYcXvD1Fbu4elS9eyerVURRVCCDH6SI5IikUCiNraPWiaRkdHgGDQIBQy8HiCaBrRYKK6uj7mOQxDUVW1AbfbT0lJDi6XDV3XcLlslJTk4Hb7qaragGGomM8XQgghMpUEIinUO4BoafFiGOBwWLDbLYTDipYWH9OmZQ8YTNTUNFJX10xBgQtN67mEo2ka+fku6uqaqalpHKm3JoQY7ZQBezbBtnXmrTLSPSIxTsnSTAp1DyC83hB+fwirVQc0NA2sVh2fL4TXG+4RTPQuvd7c7CEQMHA4Yv+4nE4rra0+mps9I/CuhBCj3o5qeKcKWuogHACLHfLL4OjlMLMy9a+vDGiqAW8zuAphSgVo8nfxeCWBSAp1DyA6OgIYBlgsBx7XNFAKQiGDnBx7v8FEYWEWNpvO/v0+rFYdq1UnK8sWfdznC2G36xQWZo3E2xJCjGY7qmH9Ugi4wVkALgeE/LC31rz/lNWpDUbSHQSJjCOBSAoVFmZht+vRmRBdNwOPyOpK5L8jMyP9BROtrT46O4Ps3+9F0zQsFg2Hw0pxcQ7Z2TZaWryUlxdRUVE8wu9QCDGqKMMMAgJuyC458MvI5gJrCXQ0mI/PWJyaGYp0B0EiI8lcWApVVBRTVlbIvn1eXC4rDoeVUMgAFEopQiEDp9OKy2WhpcVLWVlhn2CiurqeK654HqUUFovelSOi4fEEqa9vpb5+P7m5DpYvXyT1RIQYbxLN82iqMWcinAUHgpAITQNnvvl4U83Qzj8QIwRv/NRcjnFMMoMfTTdvs0vM4OSdKslVGYdkRiSFdF1j+fJFLF26loYGN/n5Lhob3fj9YcCcCZk0ycmuXR09golIzZGmpk5uueV12tt9lJZOxO0OsHt3Bz5fCE3TCIcVmqZx331fka27Qow3Q1ni8Dabx7ocsR+3OsHfah6XzCWUHdVmELLnPfP7oAesDphQDPacvkFQ0cLEzi9GtZTOiPz973/nzDPPZNq0aWiaxrPPPpvKl8tIlZWlrF59BuXlRSilyM52YLP1zPMoLy9i1SqzDkh1dT2nnfYHzj77Sb7znWd4771ddHYGcbsD5OY6mDs3n4MOymf27InMnJnHhAlWJk1ypvldCiFGVGSJY28t2LIhu9i8jSxx7KiO/TxXoRlQhPyxHw/5QLdDW/3Qzj/QWFvrzO91mzkTEvJC+3ZzJgTMIMgImEGQGFdSOiPS2dnJEUccwfe+9z2+8Y1vpPKlMlplZSmLF88etLJq76JlNpuF/ft9+P1hduxoY+bMPHJzHUyYYAYwhqFobOyQ3TJCjCfDyfOYUmHOauytNY/tvjyjFPhaoPBw+M9Tyckj6T7WrKkQ7DTv13TQ7Gbg0dlozopEgiBXYTI+JTGKpDQQOf300zn99NNT+RKjhq5rfbbldte75oimaSgFFosWXYbZvbuDnBx7tJaI7JYRYhxKJM+j9xKHpptLK+uXmgGFM9+ciQj5zCDEngvzvgH/WDm08w80VqvT/Ap6u2ZFNNCs5uxMoNNcEppcbgZLYlzJqGRVv99Pe3t7j6/xIlbRMpfLhs1mIRQy0HUz8PB4QgAopfpNcBVCjGGRPA/rAHkeAy1xzKw0d6dMLjdnKDobzdvJ5XDKKsgrHd75+xurpsGEqaBbwAgeSEpVYfDsMYOgo5dLPZFxKKOSVVeuXMktt9yS7mGkRe+iZW53IJrYGg4rwmGz4mpbmw9NM5d1ZLeMEONQ9zwPm6vv4/EsccysNJdWYhUV27Np+Ofvb6z2XMidCZ27zfNEgpHsEvjct8GRZ94nwci4klE/7euvv562trbo186dO9M9pBHTveaI2x1g+/b9eL1m/RGHwxKdId2zp4N9+zw9ElyFEONIJM/Dt8/M6+gukueRXzb4Eoemm0srs5eYt5GLf7LO39+57LkwcS7kHQRWF9gmgG8/bPofeO5seOq0xJJhxaiXUYGIw+EgNze3x9d40b3myK5d7YTDCrtdR9c1dF3DYjF32eTmOigtncTf/naBBCFCjEeRPA97jpnnEfSYswhBj/n9cJc4knn+/s4V8prLMWE/aBZw5A5vZ44Y1TIqEBnPIjVH7HYLHk8QXTeTVQ1DEQwaWCwaJSU5FBfn0Njo5p//3J3uIQshEmQoRZ3fwzvedur8HozeMw7xGizPY7jVSYdy/v6Kn8U8V4eZM2LLNnNSrE4zODECZrEzf7sUNxtHUpoj0tHRwSeffBL9vr6+ns2bN5Ofn8/MmTNT+dKjUmVlKVdddRQrVryGUopgUKFp4HJZmTo1m9xcB4ahpMGdGHcMpfg44KXNCJGnW5lrd6H33tGR4d73unmsvYmdQT8hpbBqGjNsDs7PncICV07iJxwozyMZEjn/YMXPep/Ls9cscGbPgaD7QM4ICtDMXTVN/xw7xc2kyd+AUhqIvPfee5x00knR76+99loALrzwQtasWZPKlx61vvSlOfz61+9gtVqwWCKFz6yyZVeMW0m/gKfB+143d7d8hscIk6tbsekaQaXYGvBxd8tnXJs/fWjvJZLnkSrxnD/e/jHdz7VtnblzxgiAeycYYdCtgAYoM5gJ74PtL4/+QESa/A0qpSHZ4sWLUUr1+ZIgpH8VFcUccshkPJ4gubl2JkywRYMQ2bIrxpvIBXxrwItL08m3WHFpevQC/r7Xne4hDspQisfam/AYYQotNhy6jq5pOHSdQosVj2HwWHvT0Jdp0ql3cbV4+8e4Cs1Zj47GriCkq9qqpnXdWszk1o+fGd3LM0OtgDvOyNxQhonkiuTkOGhocOPxBDEMhccTpKHBLVt2xbgxVi7gHwe87Az6ydUPzGxGaJpGrm5hZ9DPxwFvmkY4DIk20YuYUgHZ0yDsNWdC+iyzhc28kc5dfZ87GigDdr8Lr//Y3GWUSJA2DkkgkoG696fp7AzQ2NhBZ2dAtuyKcWWsXMDbjBAhpbD1k9Ni0zRCStFmhEZ4ZEkw1OJqmg5zvw5o3YqbKfPWCJgzItnTzMdGW++ZHdXmFuRnvgp7N5uJt/s/PtBTBwYO0sahjCpoJg7o3Z+me08aIcaD6AW8n3/zNk3DbSTnAp7KZNg83YpVM3NCHDHOGezKe8nTR+Gv4+EUV5v1JXjvbnMHjRHqCkZ0s7bIhGIzGBltvWe658vojq6EVMuBBn+5s8wEXejZ6XicG4X/8sePwfrTCDGWjdQFPNXJsHPtLmbYHGwN+CjUtB6zO0op2o0wc+xO5tpjXMgzXTxN9PrrHzOlAqYcYT7XMcks9a5bwZZlPrejYXT1numdLxPygEfrynvp1eAPpMlfN7I0I4TISJELeLsRRvXKA4lcwGfYHMO6gI9EMqyuaZyfO4UsXac5HMJvGBhK4TcMmsMhsnSd83OnjLrtyMDwip91f66/1QxCrM7kFWYbab3zZaxZXUtTITOwijT4C3oSr1A7xo2Sn7AQYrxJ9QV8JJNhF7hyuDZ/OnPsTrzKoCUcwqsM5tidQ9+6mymGU1wt1YXZRlLvfJneTf5Q5qxPsHN0BlopJEszQoiMFbmAR5ZO3Ia5dDLH7hz20kkiybBljuHX7VngymG+M3vUF2aLaTjF1VJdmG2kxMqX6dHkz0u0Rsrkcqkj0o0EIkKIjJaqC/hIJsNG6JqWlKAGyLxqnb2Ln0VKvsczvlQXZhsJ/eXL2HPBmg3urmTVU1b3bDIoJBARQmS+pF7Au4zq3SzJqtaZ7GAmcr7tL5vFyDp3QTg4PqqJRnJe1i81l16c+V09dHxmPoizAE68E6Yele6RZhxN9c4CyyDt7e3k5eXR1tY2rjrxDpVhKNnuK0ScDKVY1rTV3M1isfbZzdIcDjHH7uSOKXMya/mkd0l1a1dJdd8+M/EzUlI9nvMks/R45HxN/zTHopR5Ic6eZu4OSXR8o1X3z9UImO99rAdhMSRy/ZZAZASMRIBQXV1PVdUG6uqaCQQM7HadsrJCli9fJAXQhOjHgR4wBrm6BVvXDEm7ESZL1zMvkVQZZrGsvbXmFtHe22UjW16/8eLAMxvJCmZ6n8/fbiZjhv1mHRDC5m3uLLO0ebzjG+0ybdksDSQQySAjESBUV9ezdOla3G4/BQUuHA4rfn+Iffu85OQ4WL1aqrEK0Z9R1VRvzyZ47mzzoh6rgFjQYwYCZz3df85FsoKZWOdzTIK2T83gI/JcI2AWKZs0L77xiTEhket3Bi5+jh39BQi1tXtYunRtUgIEw1BUVW3A7fZTUpITnV52uWyUlFhpaHBTVbWBxYtnyzKNEDFk4m6Wfiu9RraIugYoqT5Ytc5E+sPEEyx0P58RABRmF93IObvVz+g9Ppk5EEggMiwDLbmMVIBQU9NIXV0zBQWumFsQ8/Nd1NU1U1PTKFVahYghleXdh2LgGZphlFSPSEYw09/5QgZmENItGNG0rh4yoZ7jS3aOihi1JBAZosGWXEYqQGhu9hAIGDgcsX+UTqeV1lYfzc2eIb+GEGNVpi3LHMhZCZOrW7HpZs5KpNLrtZMOZsFQS6pHJCOY6e98kWqiQS/otq4gRAG6uVwTGZ+vFV6+4kCOiqsrR2VvrZlrMtYTWkUPMgc2BJEll9raPWRn2ykuziY72x5dcqmuro8rQAgEjGEHCIWFWdjtOn5/7FoHPl8Iu12nsDC5Wx+FGO1Gorx7IuKq9OpuxjjqJ0MrqR4RqXcR2dnS3VBKj3c/H5h5IppmLtMow6wqqlvNWRZ7Lhy1DN6940BPFpvLHK/NZX4fcJszJcro/zUjNUq2rTNvBzpWZDwJRBLUe8nF5bKh61rXkksObrefqqoN5Oe7RiRAqKgopqyskH37vDH7cbS0eCkrK6SionhYryPEWDKS5d3jFXel16nHDq8s+nD6wwx0Pt0Kzf+Gjl1ghM1y5mEfoMzk2sj4nJPiz1GJZUe1mRz73NnwwkXm7VOnmfeLUUkCkQTFu+QCJDVAMAzFpk27WLfuEzZt2oVhmOfUdY3lyxeRk+OgocGNxxPEMBQeT5CGBje5uQ6WL18kiapCdJNIefeREq302k9+ik3TCKmuSq8zK81dLWc9DaetMW+/8WL8yxmp6PES+T2nAXrXUoxmBftEOP6WA+Pr3ZOlN6vTnE2JlaMS2Sa8t9YMbrKLzdvIko4EI6OS5IgkKN6cjJYWL8uXL2Lp0rU0NLjJz3fhdFrx+UK0tHgTChAGy0eprCxl9eozose0tvqw23XKy4ukjogQMQylvPtQkloTeU7ClV6HWxY9WT1elNG1lBKGgs9D2GsmpupWsLjM6qofPw3ll5nHDzVHJfI6kSWdyGdkc5n5Mh0N5uMzFsvOm1FGApEEdc/JcLlsfR7vvuSycOG0YQcI8W4BrqwsZfHi2VJZVYg4JHrRH0pSa6LPmWt3McPmMCu9alqfSq/tRpg5didz7TEu3kOVjB4v3bfv6jroE3o+3ns7cH89WWDghNtkbzsWGUMCkQRFcjJqa/dQUtK3LHRLi5fy8qLokksiAULv7cBHHDGVlSs30NLiJT/fiVJ0y0fpuwVY1zXZoitEHBK56A+6kyVG9dWhPEfXNM7PncLdLZ/RHA7FrPR6fu6UzCo3D4lvBx6sJ0t/OSrJ3nYsMoYEIgmK5GQksuQST4AQa/klK8vOp5+2mL8Y2/3oOjgcVoqLc8jJsce9BVh60AjRU7wXfaBHUmskYHFoGoWaRnM4xGPtTcx3ZkcDhN6JsPE8J2KBK4dr86dHZ1LchjmTMsfuzMxKrzC0pZZIjkqkjoi/1Txmcnn/dUSSve1YZIxxGYgM98Kc7JyMWMsvLS0e/vOfZgwDbDYdq1VHKfB6Q2zfvp9ZsyYyYYJt0Boh0oNGiNjiuejX+T1xJ7VGugMnkggbq6NwJlZ6HdBQl1oSzVEZ6uuIjDfuApFkXZiTlZNhGIqVK9+gpcVDfr4LwwBQtLT4un6JKUIhA5vNgqaB3a4TCBg0NrqZPj13wC3AI1FiXojRbLCL/lCSWofynN50TYsZpGSkoS61RJ4bbz7HcF5HZLRxFYgk+8KcjJyMBx54jzfe2EE4rGhvD6BpYLNZ8PtDXbMgYQwDwmEDi0UHNKxWHZ8vSFNTJwsWFMfcAjyUEvOyhCPGo4Eu+gnvZBnicxKWaT1aei+1+FrN+7NLoPxSc+YjFa8Ta0kn0z6bwYy28abAuAlEMrE5XHV1Pbfd9gbBYBibzYKuaygFfn+IcFhhsSisVnMGJBQy0DStq2KyIhxWOBzWfrcAD1TvxOsN4XBY+Ne/9rBp0y6OOqpElnCEiGEoO1lSvvslU3u0RJZaah8wvzoawd0A/1hpbt9N1vgGWtLJ1M+mP6NtvCkybsKuRHq/jIRIYOTzhbBYtK4gw9z5YrWaP5ZI8GG1ajgcVsJhg2DQIBxW2GwWbrzxhH6DhFj1TtzuAP/5zz4+/bSFhgY3TU0eli5dy113bRy0ZL0QY5WhFHV+D+9426nze3pUU40ktWbpOs3hEH7DwFAKv2HQHA7F3MkylOfELdMLeu18Dd69E9q3mzMVzolgnZD88UWWdGYvMW8jQUgmfza9jbbxptC4mRHJtOZwkcBo6tQJBINhvF6z/ghoXYEJGAYEg2EmTLAzd24+Hk+IUChMS4uXBQuKueyyI/s9f+96J253gO3b9xMOm7MsmmbOqmzbtp8bb3wVp9NKaenEjJgpEmKkxFPrYyg7WVKy+yXTC3opA15fBu6dgIJAO6CZeRxZU83vUzW+TP9sehtt402xcROIJFKIbCR0D4yKi3PYvn0/gYDRFSSA1aoRDJp/meXnu1DK/LfqdgcoKMji+utPGDAw6F3vpLHRTTissNvN3TehkMLlsjJlShYff9yKppHSLsFCZJpEan0MZSdL0ne/ZHpBr9oHYO8/AWV23sVMtifoBfcOyCpK3fgy/bPpbbSNN8XGfqjVJdOaw3UPjHJy7MyaNRGXy4phmMsvSpnbdufNK0QpRWNjB52dAcrLi1i1avCk2u49aLZvb8PrDWKxaF2zLAYWi8bUqdmEw+a/+2AwjMcT7HOeZHUJFiKTDKXpXSSp9WhXLmWOrLgCiqE8p1/D6dGSasqA2gfNW91m/hWvaeatbjOb4PlaIexPzfgy+bOJZbSNN8XGzYzIUAqRpVLvGYucHDs5OQV4PEGCwTCtrT4qKop54YUL+Oc/dw9pJ0uk3smPf/wSmzebXTA1zZwJmTo1m9xcB52dQXRdwzDMbcK9jfRMkRAjYbi1PtKiV0EvBfgNgzAKCxqOsA8tXQW9mmrMrrsxt+hqZt+ZsBdsE1IzvtFW7Gy0jTfFxs2MCBy4MJeXF9HZGUh4liGZ+uuaC+byS36+i+uvX4TVqrNw4TSWLDk4ujQSqwtvfyorS1m16gymTMli2rRsDjoon7lz88nNNSPxrCwrNpsFpRQWS89fyOmYKRJiJCTU6TZTRAp6+fbRGQ7zWdBPQyhAYyhAQ9CP27OX9ryD0lPQK/KXu9UJKtZn1pX0ll2cmvF1+2zoNeMdLXaWX5Y5xc5G23hTbNzMiERkUnO4RCu0DnWL7cKF0zj88CJqa/dQWNj3L0CHwwxEWlvNImrpnCkSYiSMSK2PZOsq6OV76VKC7p0oex4WiwObEWCCv40OWxZr5n6H03ydI18KPvIXvrUAOnebSzCapSv/QQMjaI6//LLUJF+OtmJno228Kaap3gkTGaS9vZ28vDza2trIzc1N93BSJp5CYv0VY9u3z0tOjmPQYmzdnx9rWWrp0oWsW/ep1BER44KhFMuatpq1Pix9m1c2h0PMsTu5Y8qcjCqtbijFA7WP8oV/3ccM9zasRoiQbmVPbikvHHoZb04+Mj3jVgY8dRrsfs+8mIbNpeAozQpTjoAL3kntxbV7XQ4jYC5vZHJdjtE23gQkcv2WQGQUMAzFkiW/5/33G8nPd2G1WsjKMn95KqVoaHBTXl7Eiy9+e8CZi8FmVKSyqhhPDuyaMWI2vYvVITfd6vweVuzdRhZwcNtHZPta6XBOYuekz6E0Hb9h4FUGt06eTZnd2bPo1+QjzF0tqarg+d5d8Mb1YIS6ds1gBigqDLoFTqiCI69L3uv1J95KpZlS0TRTxpFkiVy/M2jeUfQnVhl4p/NAwml+vouPPmrmscdqmTx5Qr9BxGDLUskoWS/EaJForQ9DqbQ3oovktlgtVnbkH9bn8UgfG2PHK/DPew9U7FSGmbuhWc2LXLIreCoDtq0zC3IZoQMzIpoG1mwzWXXbOlj4w9RfZOPpX5NJFU0T6bczRsmMSAbqPjNRX9/Kbbe9we7d7h5l4EMhcwvuzJl5KAU7drSRl+fAYtFlWUWIBMQTYMRT+GwkRGZEXJqOQ+97QfcbBnN2b2R5zS+xBzvMOhVGwKx0aoTMgCB3lrkE4NsH9hyzd8twL757NsFzZ5uBiNUJIc+B17NmQcgLwU446+n0X3QjFU0DbvPzsTrM3SvJ/DyEzIiMZt2XT/z+MPv3+wiHVbQEfKTfjM2mEwwaNDS4CQRCZkJ6tp2JE53SYVeIBAzW6TaRwmepNlgfG3c4yLkfPYQt2GFW7ATYv9PciWFxggqCZw9MmpfcCp6RuhguhzkLYpvQ83Gr02xQl+66GFLRNCPJJ51BIgmlkZ4vEyc6CYcVSikMQxEMhokkgJk9aHS83iChkGLCBBuTJjnRda2rPHsObrefqqoNg27xFULENpTCZ6k0WB+bQ9vqmN2xHS1SsTPk6apJYe0qMGY1//oPevpW8ByO7nUxYsmUuhiJVDQVI0YCkQzRuzuwy2UjHDZ/udnterToWCBgYBiqqwOvWYE1UiW1+19H6WjkJ8RYk0jhs5ESyW2ZY3fiVQYt4RBeZTDH7uRCuwWHETpQsdMIYf7xokUGDRhd95O8Cp6jpS6GVDTNSLI0kyFidQeO9J1RSsNmsxAKGTgcFoLBMIZBtFR9cXF2tEBZdyPdyE+IsSZa+Kyf3WOR5NCRLnzWbx8b9ves2KlbifZ8QesKEvSu+0neTMVoqYshFU0zksyIZIhY3YGzsqw4ndau0uuRoCOHgw7KZ/bsPLKz7TgcFnJy7DHPKeXZhRie7oXPYkln4bOYfWx6z0xYs7r+yg+Z36uu2RJbVvJnKmZWmomek8vNxNTORvN2cjmcsiozEkBHy8zNOCMzImnSu2ZHfr4r2gTP6bTi8YQIhQwmTnQSCHQSDBpoGtEy7G53gMmTJ5CX5+Czz9pxuWx9EtdaWryUlxdJeXYhhmiw5NB2I8wcu5O59hh/XadDrJmJrCJz10y4K1ckq8jMEUnFTMXMSjPRM1PrYoyWmZtxRrbvpkGswmLz5hXS2upl69ZWQiEDny+EimzDt5o7ZKxWjYkTXT225wIDVkwd6R46Qow1o7HwWZ+KnUa3OiK6PqYqeA7JGK5omimksmoGG6hUezhs0NrqwzBUV80Q8/dHMBjGYtG4+uqjOe20g/sUIhtqDxohRHwypY5IQnpX7Ex1ZdXRZoxWNM0UEohkKMNQnHbaH6it3UNJSU6PaV7DMPjgg70YBjidFgIBMyFV18Fut2CzWTjyyGn9lnFPVnl2KfMuRGyZUFlViNFCCpplqFg7YyK8XjPwAMX06XlmCYCQgdWqk5Vlw+MJRrfixirDnozy7DKzIkT/Bit81oP8tS1E3CQQSYH+ZhVi7YyJMHfGmInb4bDRZztuqrfi9rdkJBVahUhQJvUxEWIUkEAkyQaaVSgszIrujHG5bD2eZ7Wafy1FklN7S+VW3N7F1CKzNWaFVisNDW6qqjawePFsWaYRokvMpZqdr/bsY+Lq6mOyt9a8X/qYCNGHBCJJNNiswv33f4WyssKuHJGelRpdLjM5FXRcrp4/llRvxR1oyah3hVbpzitGm1TkdrzvdfN4224sTZuZ4G+l0zEJY3I5P3vr5+RKHxMxWmTIEqIEIkkSz6zCHXe8ybJlx3PFFc/T0ODus9128mSzUVTkMYfDwv79fvbv95KT42DZsuNTMiMx0JIRSIVWMXqlYrfL+143L275Mxd8+CDT3duwGUGCuo19zkJUZwOerClkDdbHJN0daIXIoCVECcuTJN5ZhUmTnKxefQbl5UV0dgZobOygszNAeXkRjzzydR555OuUlxexb5+HDz9sZufONjyeEH5/iDvueJPq6vqkj737klEsUqFVjEaR+h9bA15cmk6+xYpL06Ndc9/3uhM+p6EU7/znOS5692ZK9/+HgDWLNtdkAtYspru3kx3YT2fQS8ytiNLHRGSKHdXmUuHeWrBlQ3axeRtZQtxRPaLDGZFA5L777qO0tBSn08nChQt54403RuJlR1Q8swqBgEFzs4fKylJefPHbPP30uaxZcxZPP30uL774bSorS6msLGXZsuNxOKxkZdmYOTOPz39+MoWFWdElnmQHIxUVxZSVFbJvn5feu7kjy0JlZYVSoVWMGqnqmvuxv5Nj/3U/WcFO9mcVEbQ6UZpO0OLAY8sBpcjx7MYfihHUSx8TkQmUYc6ERJYQbS5zOcbmMr8PuM3HlTFiQ0p5IPLkk0/ygx/8gBtuuIGamhpOOOEETj/9dHbs2JHqlx5Ric4qRLbbLllyMAsXTosuuRiG4o473iQQCDNnzkTy813outa1xJOD2+2nqmoDhpG88i+6rrF8+SJychw0NLjxeIIYhsLjCdLQ4CY318Hy5YskUVWMGqnqmhvcs4lp7no6HROjOSDOYAdT3NuZ5GtCR+Ew/NjaPoZA+4EnjmQfE2XAnk2wbZ15O4IXFDEKNNWYyzHOggN5TBG9lxBHSMoDkbvvvptLLrmE//7v/+bQQw/lf/7nf5gxYwb3339/n2P9fj/t7e09vkaLZM0qJJI4mkyVlaX9LhlJmXiRCQylqPN7eMfbTp3fM+BsRrRrbj9JqTZNw6eMuM7VXZ5/P1YjSFA3G006gx3kdzZiC/sw0Ahq5m44PeSFtm3gbzP7unQ0jEwfkx3V8NRp8NzZ8MJF5u1Tp434VLvIYN5mMyfE2rdjO5CWJcSUJqsGAgE2bdrE8uXLe9x/6qmnsnHjxj7Hr1y5kltuuSWVQ0qZyKzC0qVrYyaixjurkM7E0crKUhYvni2VVUXGSTTptHvXXEevYMRjhGkOBQmg+HN7M2s7WuJOYC3JLaFNt6EbfgzNSa63GU2FCWvWrr8uDQws6LrDbDLXvsNsMje5POEkwIR3+0TW/WXrsBiIq9BMTA35zeWY3tKwhJjSGZHm5mbC4TBFRUU97i8qKmL37t19jr/++utpa2uLfu3cuTOVw0u6ZMwqpDtxtL8lIyHSZShJp5Guue1GuMcMpccIszsUwI/CjsbkBBNY9aIFWPIPIdffhiXowRoOYGgW0DQUYFFhsGahFRwCubPAkQcn/BK+8WJCQcD7XjfLmrayYu82bm/eyYq921jWtLX/8WXgur/IUFMqzCVC3z5zybC7kVxC7GZEtu/2XmJQSvW5D8DhcOBw9DNdNEoMd1YhssQTq9ZIquuJCJFpeiedRv5/cGgahZpGczjEY+1NzHdm95gt0DWN83OncHfLZzSHQ9Guuc2hIGHAikah1YZF17HAgOfqQdPJPfZn+F66FJunGR2DIFZ0pbCqMJpuRc8u7lprnwhhL2RNTmg55kC33zC5uhWbbs7sRIKlmN1+E1n3l63D45umm7Nz65eaS4bOfHM5JuQzg5CRWELsJaWvVFhYiMVi6TP70dTU1GeWZCwZzqyCJI4KccBwkk4XuHK4Nn86c+xOvMqgKWwuxzjQKLLayNItcZ+rh5mVOE99kKyCQ9EBuwphxUC3udBzZ4G9K0gYwhT3kHf7ZOC6v8hgMyvNpbrJ5RDshM5G83ZyOZyyasSX8FI6I2K321m4cCHr16/n61//evT+9evXc9ZZZ6XypUe1yBJPpFR8a6sPu12nvLxIGtCJcSWadNpP4G3TNNyGos2IvZS5wJXDfGc2Hwe8vONt58/tzUy2WLHoff8GG+xcPcysRPuvDfD4IrTW/5h5IPYJBx6PTHFPLk9oijuRwKtHA74MXPcXGW5mpVnldzxUVr322mv5zne+w5FHHsmxxx7LAw88wI4dO7j88stT/dKjmiSOCjFw0ilAsCtxNU8/8KssVpJn5KK9tqOFEGDpc6bY5xqQbjXzP9YvBX9rV6Oo4U1xDznwiqz77601y8l3/6yGGBSJcUDTM2KpLuWByLnnnsu+ffu49dZbaWxs5LDDDuNvf/sbs2bNSvVLj3qRJR4hxqtI0unWgI9CTeuTM9VuhJljdzLXbs4CDLS7Zr4zO6FzxSUyxR0ple1vNWcehrBLBoYWeAEZue4vRLw01bvoRQZpb28nLy+PtrY2cnNz0z0cIUQMqWgq192B5E0jmnQa7AocsnQ9mrzZJ8kzxnFAn3N1GGE6DIMsXWdZwQwWDqUHTZKahxlKsaxpqxksWfomqzeHQ8yxO7ljypzYn3H3/iFGwAyKUtU/JNZ7hoyY6hfpl8j1WwKRDGYYSpZmREZLdlO5/oKawV7nwAXc22N3DfS9gG/2dfBYexOfBrx0GAYGCh3I1i0cZHcNqyFeMsQbePVrJDqqxmqY5poMGuDZm/YmaiL9JBAZA6qr66PJqoGAgd2uU1ZWKMmqImNELpjtRhiXpmFHx6Jp8V8wY5xvsGCjv5mXOr+HFXu34dJ0HDESUf2GgVcZ3Dp5NmWOLN7ztHNHy068hkG2bmGCphOCIY99MInOGqWia3DS9C6cZnWAtwU6PjMfz5luLg2F/GatCnuOFFMbhxK5fo9IHRGRmOrqepYuXYvb7aegwIXDYcXvD0Wb3q1eLSXXRXoZSrG6tZE9oQAK8AAaGnZNY5JuiW4zHbAmRzfx1s7osVOkm3iTPPeHQ3zk72T1/kZ8hsFUiw29K3BJqJ5IAoYSVHTf7ZOqJa8h6V04TdPMZFh/C+Z0SFdirKvQ3L1jLTFzVt6pMndoyDKNiEH+VWQYw1BUVW3A7fZTUpKDy2VLedM7IRL1V/c+Pg16MQALGlZNQwf8yqApHMKmEXdTuWR0yu2e5BlLUCkMFGvadvPTpm1sDfrwKINd4SAeIxw9bjgN8WIZSlXYCF3TKHNkcbQrlzJHVvqDEIhdOC3k6doebAXdZs6EBLtaUKSpiZoYXSQQyTDpanonRLwMpVjbsQ8Dc0o18s9U08CqaRgo3OEwIRVfTY5kdMrtr6Q7dFUkDofwGga7g35sXS8RCZz2hHoGIzZNi3vsA0lGgJVxYhVOM0KAArRovx26f3ZSTE0MQgKRDBNP07tAwEhJ0zsh4vFxwMu+cAgd8/LTmwWNAAoFcdXkiKdT7mCBQaSke5au0xwO4TcMDKXwGwbN4SABDGyaxmSrHadmQUdDQ8MCGJiBSiSASbieSD+SEWBlnO6F0yJ0K9FlGaUAveu+LlJMTQxCApEMk+6md0IMps0IgVLYNR0D+sxAgMIACi3WHjU5DKWo83t4x9tOnd8TnQmIZ1klnsCgd0n3lnAIrzKYanXg0nQKunbTOHUdu6YRxux5pQMBpfArFa0nMsPmSKyeSAz9BViaMpjZ8m/m797AzH3/pi0cGNbrjKhYDdOsWV2zHiEwguZsia3r91OamqiJ0UWSVTOMNL0TmS5Pt2LTdWwKWpUijEJXKvI3MWHMv3C+kl0QzWsYqUJjsZI8W8NB/r99n/UICPItVvaEgoSU6prZUfgMAzeKLF3n/Nwpw87JiFWcrGz3W5z24QMUtddjMYIEdRtZdYdC2bcgrzTza2/0VzjNMelAXogj30xqlWJqIk7yLyPDSNM7keki+RhBFFMsVhyajkIjjBmI6MAcm5MzcwqAwRM2N/s6BlhWCSUcGPRO8pxksfWZccnSLRRZbTgiszpAEMUcuzNpW3d7562U7X6LC969iZLWOnzWLPY5C9HRyWrYAK9cA2v/C547G546zdwim6liNUwDmDwfpswHVNqbqInRReqIjKCBCpT1fqy11ccdd7wpdURERupedCtH0zE0CBgKrzLI0XWuK5gx5EJjya6dMVi10j3hIEUWGz/Mn5703SmRz8kbDnHLG5czo7WOFlcRYQ0mhDop8jSiRxJlrVmQPd3cCjsaam9IZVUxAKkjkoEGKlAGxHxs2bLjmTTJKZVVRcaJ5GNEAwfDDBzm9apMmkjCZqpqZ0QSWe9u+YzmcKhPtdIc3cLlk6ZxqHPC4CdLUORzer2+mqL2etoceRiahkPTmOJrQVcGWBzmRT3sA02Z9TlGQ+2N/hqmZUATNTG6SCAyAgYqUPad7zyDpkEoZPR57Iornmf16jNYsuTgdL8FIfqIJ3BItJtsZFklFWPtHji5uwKnOXZnyquVLnDlMN/lwMAgy56NRbPgCPvQwn7QIr+CuzJsjFDf2htyYRdjnAQiKWYYipUr36ClxUN+vgvDMH/PuFw2pk2z8MEHewGNww6bHP2L0SxeZqWhwU1V1QYWL54tMyEiIw0WOHRP2LQD/q7kVgvmrECytsrGI53VSvWsyegWB1YjBDYbBEOAAZql64iuOhyRz8HqNDv5Su0NMQ5IIJJiDzzwHm+8sYNwWNHeHjD/2HFamTo1G4tFxzAADLzeEFlZtujzehcvW7hwWtregxBDFUnYrPN7MDC3ySpUtBy8DpQ5soa9VTZeqZpxGVRk2+veWrPsuW4F9ANbYI1QV0n0rrFJ7Q0xjmTo4uPYUF1dz223vUEwGMZi0bDZdCwWHa83xI4dbbS3m0WBlDKXZnqT4mVitNM1jaOcOXiV2XQOFOYcgIred5QzJ+FZif5qkgz32JSJbHu155j5H2AWBjOC5pdugQlTD/RuGcnaG8qAPZtg2zrzVvX9XSREKsmMSIpEesb4fCEsFrM2gvkFNptOMGiwf78PpZRZGtvaNyaU4mUi3RLtGhvr+e/63Lg0C2FlEASzkBgaTsCq6bzrc/Ot3MlxnzeRJnIZ1cU2su31nSoz/8NiN2c+NB2yisCWbdbiSFbtjVi7Wnqfb0f1gfGEA+aY8svM187kHTtiTJFAJEUiPWOmTp1AMBjG6zWDCjADEqtVJxgMo2mg6zouV88fxWDFywbaCixEMiTjIh7ZNVNgseLQdXyGEc0Rceo6fsOI7pqJZ8kk3i69iR47YmZWmjthIgFCWz385ylo/Y9Ze0O3m7U3hhsIxBNg7Kg2C5MF3GYTO5fDLN2+t9a8P9O3D4sxQwKRFOneM6a4OIft2/cTCBhYrXrX7KsiHFZMmuTE6TQTU/PzXTidVny+EC0tXnJzHSxbdnyfgOO117b1uxVYaoyIZEjWRbz3rhmn3vMv8t67ZgbSu4lcJLnboWkUahrN4RCPtTcx35kNEPexI97Vtve21/LLklt7I54AY8ZiM1AJuM3twpHPwOYyc1hGw/ZhMWZIIDIE8cxGdO8Zk5NjZ9asiTQ2uvH7Q10Jqgq7XefnP69k3ryCaGDR2urDbtcpLy9iyZKD+hQ1mzx5Art3d8Tc7rt06VpWrz5DghExLIlc8Ae7iMcqc95dIrtmEm0iF++xaUle7TGgfupx9GegJRdlxBdg2HPM2RJnwYFjouOR7cNiZEkgkqCBCpN1DwB694zJybGTk1OAxxMkGAzT2uqjoqKYyy5biK5rLF48u09l1SuueL5H7RGfL0ht7R7CYYOpU7NRyiwJL9t9RTIlcsEf7CIe2TWTjD4yidYkSeTYUWOwJZemmvgCjMZ/mM93OWK/jmwfFiNI5twSEClMVlu7h+xsO8XF2WRn26OzEdXV9dFj++sZA+B2B8jPd3H99Qd6xui6xsKF01iy5GAqKoq54443cbv9lJTk4HLZ0HWNjo4goZCBYUBjYweffNLCf/6zD7c70Ge7rxBD1V/X2AibphFS8V3EI1VNk9FHJpEuvcnq6JtRIksue2vNxNbsYvM2suSyo9oMHMIBswNuLFYnGF3dfi12c8kmFtk+LEaQBCJxiuyC6R0cmLMRObjdfqqqNkSDDYDKylJWrz6D8vIiOjsDNDZ20NkZoLy8iFWr+l9CiSS6FhS4on9Btrf72b27g+6/VzVNw+sNsX37ftzugGz3FUmR7It4pKrpHLsTrzJoCYfwKiPhBnO9m8h1F5ldmWFzMNfuSujYUaH3kovNZS7H2Fzm9wG3+bgzP74Ao/gYcybFtw96/5xHevuwGPdG0Z8D6RUrOIgYqPhYZWVpn2WXwXa4dE90BfMX5+7dHRiGipYZUMqcabXbdQIBg8ZGN9On58p2XzFsyVxOiUhGVdPBesb0nl1J5NiMF++SC/QsnNb92EiAMbnczPs4erk5k9LRYD7f6jQDlWRtHxYiTvKvLE69g4PeBpqN6L7ssnDhtEHzN7onugJ4PCF8vlDXjpsDzzX/29wK7PMFaWrqpKysMOZ2XyHilczllN7nLXNkcbQrd8hdbhOZXUnWTEzcUlkYLN4lF19Lz8JpQY85jqDH/L57gBGpazK5HIKd5vbhYKf5/SmrZOuuGDEyIxKn7sGBy2Xr83gyi4/1TnQNhYxoYqrNpuH3H5hKVUpFtwI7HFaWL18kiapi2NLZJC6escU7uzJi/WVSXRjMVXhgycUWYyaqe05H0cKehdP8rf3XJ+ld1yQZ24eFSJCmei+gZpD29nby8vJoa2sjNzc3rWMxDMVpp/2hKzjI6TNd3dDgpry8iBdf/HZCgUB/W4G7d+x1uWw0NLSjaVp0ecZmsxAMhqPLuxaLxv/8zxIuv/yoZL91MY4Nt7LqcM6ZitdOid51O6xddTt8+8yZiWQUBlMGPHWaueSSHWPJpaPBDDS+8WLPrbwSYIg0SeT6LTMicYrsglm6dG2/xccSnY0YbCvw6tVnUFW1gY8+2oumaYRCYbKybEyblkt2tg2PJ0QoFKalxcuCBcVcdtmRKfwExHiU7CZx8VZrzajS7AOJt27HcAuDRXrVJJLTkWh9EiHSRGZEEhRvHZF4zhOZ8ehemGzfPi85OY5oYbLIjMnLL2/l179+l0AgHDMIGmgXDkhJeJF+faq19koejeRtxHtcRtizCZ4729xGG2vJJOhBBTvYfvrjNBUePvyZne5LQEbAXHKR3jAiA8mMSAoNZRdMb723AkeWeforTLZw4TQWLpzGUUeVxKzAOlgQlKzgSYihirdaa7ljQuaWZo8lkkTaT2GwTt1OOOjjsd0fsImJw5/ZkZwOMQZJIDIEkeBgqEZyK3B/My9SEl6MpHirtVZ79o+e0uwwYBJpp2HQ6u/AoVvwOwvIt1iT03RPllzEGCOBSBrEsxW4tdU34FbgCMNQbNq0K2ZgkujMixCpEm959j2hwOgqzT6lImbdDgW0hAJkB/aza1IZewo+j65pmTuzI0QaSSCSBsnaCjzYkstQZ16ESLZ4m98VWe1Ja5I3IvpJIg0EvWR79uK3ZbPuc5ehui2d9JjZ8bkpq/8LtG+H3FlwyHmQKe9NiBEiC4tpEKkTsm+fN2b56ZYW76CFybr3vZkwwUZenrlGvWnTLi677K9UV9cPqwibEMkUb8n1yqyJo680e8zCYB1snziPR4+6hbqpx/Z5ik3TOH3Lw8z57Wx48SJ4c4V5e38RvHfXSL+D9EhlATgxqkjonQbxbAVetuz4fnNBui+55Oba+ewzNz5fKFr2vaMjwLJl67n//q+MWBE2IQYSb3l2a9ftqCvN3iuJtNGSTRV5OHUrsdJYK7f8lm/963+wqDDoNtB180Lsa4U3rjcPOvK6kXwHIyvVBeDEqCLbd9Oov6WVJUsOYt26T/tdctm0aRdnn/0kmga7d3cSDquu8u9mbaNgMIymwT33nM6zz36U9CJsQgzVmKsj0g9DKZY1bTX79Vh6Jt5q4SB3PHM82YF2NIuz57KpUhD2gXMSXLFnbC7TjEQBOJF2iVy/JRBJs971PVpbfVxxxfMD1hcJBsNceOGzeDxBvN4QNlvPHjSGYRAIhJk/fyq3335K9HxDqT8iRLKNucqq/ThQD8XoMbNzxNZn+f67N4BmxRIr0DBCoMJw2hr43LdHfNwpNZQKsWJUSuT6LT/pNOveEK+iopg77ngzusvF5bKh61rXLpcc3G4/VVUbyM93oWng9fZthGfS0HWNXbvcTJrkZPXqMygvL6KzM0BjYwednQHKy4skCBEjLpHgIhlN8tKpv6Z7Zf696Aos/V1oNR1QZgLrWBNvF+GmmvSMT6TFGJz3G73i3eUCUFycQ1OTB01TQPdjFaGQgdNpBTSamz0sWXLwsIuwCZGIWAHHZl/HqF5uGYqYTffa5qPVaubsQKxgRBmAZu6iGWsGKQCH1Wk26fM2j+y4RFpJIJJB4q0v0tLi5bLLFnLNNS8QCBjYbFo0PyQUMrBYNAoKslBKRRNRh1uETYh4xcrvyNMttBohwkqZZdt1LTnFvUaBPv16Dv0veO0HZmKqZum7PGEEzRyRQ84b8bGmXCJdhMW4IUszGaR7fZFYuu9yueyyhRxxRBEWi044HCYYNDAMA5fLysyZefh8oUG3AAuRbJG8iK0BLy5NJ99ixYlGfdBHSzhElqbj0HWzuJeuU2ix4jEMHmtvwsjcdLXk0q1wzE/N27CvKyfEMG/DPnOW5HPfGZs5EpECcL590PvnrZTZwC+/zDxOjBtj8F/66JVIfRFd17jjjlOYOTOP3Fwn06ZlU1o6ienTc2lv9w+pG7AQw9G7n0wk4Oj+F3+rEe7xnN5l28eNI6+DE1aaMx8qDGG/2cQODaxZ8PEzZlLnjup0jzS5IgXg7DlmYmrQYwZhQY/5fawuwmLMk592BonUF8nJcdDQ4MbjCWIYCo8nSEODu09wUVlZyurVZ7BggTnr0dbml0RUkTb99ZMJo1CABQgohc84ULhKKUUYhccI84G/c/zMioAZjFyxB476MTgmmRfhSWUw6WCzm+/eWnOb61gLRmIWgOs0vz9llWzdHYdk+24GSrRbbu8twJKIKtLhHW87tzfvJN9i7bHDxWcY7AoF0FAYwFSrnQm6BY8RpiUcwq8MFGYZ+Dl255hOXu1jPG9nVYZ0ER7DErl+S7JqBkq0y64koopM0F8/GYemYdc0fEqhARY0PEaYPaEgRtdsiQNziWY8JK/2kMh21rHWcVe6CIsuEoikyHBnKSS4EKNNpJ/M1oCPQk2LLs9omsYk3UJj2DA3mivFPiNEGHMy1oJGgdXMKRl3nWnTtZ1VZiNEBpFAJAUSXVoRYiwYqJ+MRynydSv5Fht7w0H8ygxKHF07a7J0C9A3ebXHttexKB3bWaXPi8gwEgInWfeuuNnZdoqLs8nOtlNbu4elS9dSXV2f7iEKkTL9VROdY3dyfeFM7i+ey7fzpjBBt1BssTPd5ogGIRE2TSOkFG1G7G3sY0o/21kV4AuHCXj30TnxYIzJ85PzepE+L3trzYTY7OKxnRgrRgWZEUmi7l1xuzeZM0u0W2locFNVtYHFi2dLMqkYs2JWE+1Wyv3zjgm4NB1LP8suwWgRtHHw6ymynXX9UjMx1ZlPp27HHejE4W/Fa5vAbw66gPa924afxKsMcyYk4O6ZGGtzgbXEfP13qswuwrJMI0aQ/GsbgGEoNm3axbp1n7Bp0y4MY+ANRvGWaK+paUzlsIVIu4H6xERySdqNcMx6Oe1GmBk2B3PtMZYqxqJu21n9ATfBjgYsoQ4aJpXx+FG3snXqcdEk3ve97qG/jvR5ERlqHPzJMTRDyfOIt0R7c7MnlUMXIqMNlEvSboTJ0nXOz50y9hNVu5tZiTH9RO77aC3uzt3orkI+y/88StNxQHKSeKXPi8hQMiMSw1DzPBIp0S7EeNZfLslUq50vZ+czQbeMr+JmwMdBP2/nzmXrtBPZWXA4qtvySFIq0HZPjI1F+ryINJFApJfeeR4ulw1d17ryPHJwu/1UVW2IuUyTSIl2Ica7Ba4c7pgyh1snz+YbOYXkW6w0hwI81d7Mir3bWNa0dXhLEaNMmxEipBS2fmY7hp3EK31eRIZKaSDyi1/8guOOO46srCwmTpyYypdKmuHkeSRaol2I8U7XNDqNMH/rbGFPKECWbiHfYsWl6cnJixhFuheEi2XYSbzS50VkqJT+iwsEAnzrW9/iiiuuSOXLJFU8eR6BgNFvnkek/0t5eRGdnQEaGzuk/4sYEwylqPN7eMfbTp3fk5Slk/4a5Y3HzrwjksQrfV5EBkppsuott9wCwJo1a+I63u/34/cfWL9sb29PxbAG1D3Pw+Wy9Xk8njyPREu0C5GJDKWiW3AbgwH+7tnPZ6EAoa6/zGfYHMPeUtpfozwYf8XNRiyJd2aluUVXKquKDJFRu2ZWrlwZDV7SJZLnUVu7h5KSnr8cI3ke5eVFg+Z5SIl2MZq973XzWHsTO4N+vMrAY4TRgHzdRr7FSlCppPSFieZF9BOk2zQNtzFOiptxIIk38tm7DTPoS3ozQOnzIjJIRgUi119/Pddee230+/b2dmbMmDGiY4jkeSxdupaGBjf5+S6cTis+X4iWFq/keYgx732vm7tbPsNjhMnVrbjDISILBa1GCLuukaVbkrKltL9GeRHjqrhZl8EKwgkx1iQ8F3fzzTejdTW06u/rvffeG9JgHA4Hubm5Pb7SQfI8xHjVO2dDAUHAioYFMFC0hEMopZKypVSKm8U2UEE4IcaahP/MuPrqqznvvPMGPGb27NlDHU/GSGWex3A78wqRKr1zNsLKQKG6lig1dKUIKIVfKZyaNqylk0gOygJnNjuCfprDQXJ1qxQ3E2KcSTgQKSwspLBwfBS8SUWeh3TmFZmsd86GBQ0NDaXMKuAa5qxIuGuxZqhLJ91zUEJKdZ3TfH0dLTV5EUKIjJTShdcdO3bQ0tLCjh07CIfDbN68GYCDDz6Y7OzsVL50RopUbHW7/RQUuHA4rPj9oWjF1tWrZdlHpFfvnA2nrmPXNPzKwIqGAjQ0LGjRpZM5dmdCSye9c1Bsuvl6beEQNl3ja9mFLHTlSF6EEONESvdrrVixgoqKCm666SY6OjqoqKigoqJiyDkko9lwKrYKMVJi5WzkW6zomMFCGHMnC0rRHA4lvHQyUN2QyVYbIQXv+zskCIlQBuzZBNvWmbfKSPeIhEi6lAYia9asQSnV52vx4sWpfNmMJJ15xWgQqWWRpes0h0P4DQOnpjPJYkHHXJqxAj4Uc+zOhLfuJlI3ZNzbUQ1PnQbPnQ0vXGTePnWaeb8QY8j42ROXZtKZV4wW/dWyOMKRzQlZeRTb7EPeUip1Q+K0oxrWL4WAG5wFZsfckB/21pr3n7JaqqCKMUMCkRGSjIqtQoyUVNWykLohcVAGvFNlBiHZJWaWMIDNBdYSsy/MO1VmdVSphirGAPlXPEKkM68YbVJRy0LqhsShqQZa6syZkN6fuaaBM998vKkmPeMTIskkEBkh0plXiNg5KIZS+A1jSMmvY5K3GcIBsDpiP251ghEwjxNiDJBAZARJxVYhDuSgzLE78SqDlnAIrzKGlPw6JrkKwWI3c0JiCflAt5vHCTEGjOOF2PSQzrxCSD+VAU2pgPwyMzHVWtJzeUYp8LXA5HLzOCHGAAlE0kA684rxIFLCvb9AI5KDInrRdDh6ubk7pqPBzAmxOs2ZEF8L2HPNxyVRVYwREogIIZKudwl3q6Yxw+aQku3xmllpbtF9p8pMTPW3mssxk8vNIES27ooxRFO9U9czSHt7O3l5ebS1taWtE68QIjF9Srj3amIXyQMZbMZEYG7lbaoxE1NdheZyjMyEiFEgkeu3zIgIIZKmdwn3SPVUh6ZRqGk0h0M81t6EAh6XGZPBaToULUz3KIRIKQmthRBJE08J908DXm7ft5OtAS8uTSffYsWl6WwN+Li75TPe97rTNHohRDpIICKESJpoCfd+llisQIcRxhuj6V2hxYrHMHisvQkjc1eMhRBJJoGIECJpupdwj6VTGRhAtm4ZF03vDKWo83t4x9tOnd8jAZYQMUiOiBAiaSIl3LcGfBRqWo9gQylFhxFGRyNbt8R8/lhqeic7h4SIj8yICCGSZrAS7i5dJ1vX+50xGStN7yI7hyQPRojBSSAihEiqgUq4L8ufwUF215huetd755DkwQgxsNH9Z4cQIiMNVMJd1zTubvmM5nCIXN3Sp87IaG96F8/OoUgejFSWFUICESFEivRXwj0yYxLJn3Ab5nLMHLtzTORPRHcO9dM/aizlwQiRDBKICCFG3Fhuetd955AjxvsZK3kwQiSL/J8ghEiLsdr0brCdQ+1GmDl256jOgxEimSRZVQghkmiwnUNjIQ9GiGSSQEQIIZJsoJ1DkaZ/QgiTLM0IkeGkS+3oNJbzYIRIJglEhMhgmVadc7CgKGlBkzKgqQa8zeAqhCkVZifaUWas5sEIkUwSiAiRoSLVOT1GmFzdik03d2JEqnOO9BT/YEFR0oKmHdXwThW01EE4ABY75JfB0cthZmXq3qAQIi1G358YQowDmVadc7CS5U+2NSWnpPmOali/FPbWgi0bsovN27215v07qlP7RoUQI04CESEyUCLVOVNt8KAozKPtTXSGQ8MLmpRhzoQE3JBdAjaXuRxjc5nfB9zm48pI+XsWQowcCUSEyEDR6pz95FfYNI2QGpnqnIMFRQ5Np9MI49QtwwuammrM5RhnAfR+35oGznzz8aaaZLytjGUoRZ3fwzvedur8HulJI8Y8yRERIgNlUnXOwUqWa4Dquo0l7pLm3mYzJ8TliP241Qn+VvO4MSrTkpOFGAkyIyJEBopU58yELrXdg6JYIkFIf3+3xx00uQrNxNSQP/bjIR/odvO4MWiwPJy482yEGGUkEBEiA2VSdc7BgiK/MpigW/AZxvCCpikV5u4Y3z7oHfQoBb4W8/EpFcl4Wxkl05KThRhJEogIkaEypTrn4EGRhQtypzDBYhle0KTp5hZdew50NEDQYyamBj3m9/Zc8/FRWE9kMJmUnCzESJMcESEyWKZU54wERZH8BbdhLrfMsTuj+Qtz7a4BH4/LzEo4ZfWBOiL+VnM5ZnL5mK4j0l8ejqYMZrR+yARfCw3WXNrypwFSIE2MLRKICJHhMqU652BBUdKCppmVMGPxmKisGq9Yycllu9/itA8foKi9HosRJKjbyKo7FL5ww5gNyMT4JIGIECJugwVFSQuaNB2KFg7/PKNEJA9na8BHoaZxyJ63ueDdm3AGOuhwTMSn25hghMja94FZ2O2U1RKMiDFj7P6JIYQYE8ZDXY3ueTj7QgFO/fABnIEOWlxFeC0ONM1CjiMHTQq7iTFIZkSEEBkr0boao7lTcSQP5/X6aora62lz5GFoGg5NI99iY4Le9Xdj98Ju42jWSIxdEogIITJSok3/xkIxsAWuHOa7HBgYZNmzsWgWHLres1jcOCjsJsYXCUSEEBmnd12NyJZWh6ZRqGk0h0M81t7EfGc2uqZlXKfi4dCzJqNbHFiNENhsfQ8Y5YXdDMMgEAikexgiCex2O7o+/AwPCUSEEBknkboakW3D8QYtGS9S2G1vLVhLevbdiRR2m1w+Kgu7BQIB6uvrMQzJbxkLdF2ntLQUu90+rPNIICKEyDiD9bfp3r8mkaAlE7ZBDypS2G39UrOQmzPfXI4J+cwgZJQWdlNK0djYiMViYcaMGUn5S1qkj2EY7Nq1i8bGRmbOnNnn/71ESCAiRAYazUmXyZBI079EgpZRYwwWdguFQng8HqZNm0ZW1igICMWgJk+ezK5duwiFQthiLSPGSQIRITLMWEi6HK7edTW6/7UV6V8zx+5krt3FxwFvxnQqTqoxVtgtHA4DDHsaX2SOyM8yHA4PKxAZnf+ihRijpAOrKZGmf5nUqTjpIoXdZi8xb0dpENLdcKbwRWZJ1s9y9P+rFmKMkA6sPcXb9C+TOhULIRI3yuYqhRi7xlzSZRLE278mnqZ8QojMJIGIEBliTCZdJkG8/WsypVOxECIxsjQjRIbovlMkllGbdDmCIkHL0a5cyhxZEoSMQYah2LRpF+vWfcKmTbswjMxdqty2bRuaprF58+Z0DyWjyW80ITJEIjtFhBiPqqvrqaraQF1dM4GAgd2uU1ZWyPLli6isLE338MQQyYyIEBlCki6F6F91dT1Ll66ltnYP2dl2iouzyc62U1u7h6VL11JdXZ+y1/7zn//M4YcfjsvloqCggC996Ut0dnYC8PDDD3PooYfidDo55JBDuO+++6LPKy01g6OKigo0TWPx4sWAWQzs1ltvZfr06TgcDubPn8+LL74YfV4gEODqq6+muLgYp9PJ7NmzWblyZfTxu+++m8MPP5wJEyYwY8YMrrzySjo6OlL2/lNNAhEhMki8O0WEGE8MQ1FVtQG3209JSQ4ulw1d13C5bJSU5OB2+6mq2pCSZZrGxkb+67/+i4svvpgtW7bw2muvcfbZZ6OU4sEHH+SGG27gF7/4BVu2bOGXv/wlN954I7/73e8AeOeddwB4+eWXaWxs5Omnnwbgnnvu4a677uLOO++ktraWJUuW8NWvfpWPP/4YgP/93//lL3/5C3/84x+pq6vjD3/4A7Nnz46OSdd1/vd//5d///vf/O53v6O6upply5Yl/b2PFE313nifJNu2beO2226jurqa3bt3M23aNL797W9zww03xF3Qpr29nby8PNra2sjNzU3FMIXISOO9sqoYe3w+H/X19ZSWluJ0OhN67qZNuzj77CfJzrbjcvUtnOXxBOnsDPD00+eycOG0ZA0ZgPfff5+FCxeybds2Zs2a1eOxmTNncvvtt/Nf//Vf0ft+/vOf87e//Y2NGzeybds2SktLqampYf78+dFjSkpKuOqqq/jpT38ave/oo4/mqKOO4te//jXf//73+eCDD3j55ZfjqtXxpz/9iSuuuILm5pHtyDzQzzSR63fKckQ++ugjDMNg9erVHHzwwfz73//m0ksvpbOzkzvvvDNVLyvEmBDvThEJWMR40NzsIRAwcDhiX7KcTiutrT6amz1Jf+0jjjiCk08+mcMPP5wlS5Zw6qmn8s1vfpNQKMTOnTu55JJLuPTSS6PHh0Ih8vLy+j1fe3s7u3bt4vjjj+9x//HHH88///lPAC666CJOOeUUysrKOO200zjjjDM49dRTo8e++uqr/PKXv+TDDz+kvb2dUCiEz+ejs7OTCRMmJPkTSL2UBSKnnXYap512WvT7OXPmUFdXx/333y+BiBBJIKXgxXhRWJiF3a7j94dizoj4fCHsdp3CwuTX17FYLKxfv56NGzfy0ksvce+993LDDTfw17/+FYAHH3yQY445ps9zBtN7pkMpFb1vwYIF1NfX88ILL/Dyyy9zzjnn8KUvfYk///nPbN++nS9/+ctcfvnl3HbbbeTn57NhwwYuueQSgsFgkt71yBrRHJG2tjby8/P7fdzv99Pe3t7jSwjRl5SCF+NJRUUxZWWF7NvnjVnGv6XFS1lZIRUVxSl5fU3TOP7447nllluoqanBbrfz5ptvUlJSwtatWzn44IN7fEWSVLv3YonIzc1l2rRpbNiwocdrbNy4kUMPPbTHceeeey4PPvggTz75JE899RQtLS289957hEIh7rrrLr7whS8wb948du3alZL3PVJGbPvup59+yr333stdd93V7zErV67klltuGakhCTEq9S4FH/kryqFpFGoazeEQj7U3Md+ZLcs0YkzQdY3lyxexdOlaGhrc5Oe7cDqt+HwhWlq85OY6WL58EXo/xQCH4x//+AevvPIKp556KlOmTOEf//gHe/fu5dBDD+Xmm2/m+9//Prm5uZx++un4/X7ee+89Wltbufbaa5kyZQoul4sXX3yR6dOn43Q6ycvL48c//jE33XQTBx10EPPnz+fhhx9m8+bNPProowD86le/ori4mPnz56PrOn/605+YOnUqEydO5KCDDiIUCnHvvfdy5pln8uabb7Jq1aqkv+8RpRJ00003KWDAr3fffbfHcxoaGtTBBx+sLrnkkgHP7fP5VFtbW/Rr586dClBtbW2JDlOIMesjX6c6Z+cH6sLPtqjLdtX1+brwsy3qnJ0fqI98nekeqhBRXq9Xffjhh8rr9Q75HK+8slWdcsojaubMu9XUqXeqmTPvVqec8oh65ZWtSRxpTx9++KFasmSJmjx5snI4HGrevHnq3nvvjT7+6KOPqvnz5yu73a4mTZqkvvjFL6qnn346+viDDz6oZsyYoXRdVyeeeKJSSqlwOKxuueUWVVJSomw2mzriiCPUCy+8EH3OAw88oObPn68mTJigcnNz1cknn6zef//96ON33323Ki4uVi6XSy1ZskQ98sgjClCtra0p+xxiGehn2tbWFvf1O+FdM83NzYNm5s6ePTuaQbtr1y5OOukkjjnmGNasWYOux78aJLtmhOjrHW87tzfvJN9ijTnjYShFSzjETwpncLRL/r8RmWE4u2a6MwxFTU0jzc0eCguzqKgoTslMiBhc2nbNFBYWUlhYGNexDQ0NnHTSSSxcuJCHH344oSBECBFb91LwjhiBiJSCF2OZrmtJ36Ir0itlv6l27drF4sWLmTlzJnfeeSd79+6NPjZ16tRUvawQY56UghdCjCUpC0ReeuklPvnkEz755BOmT5/e47EEV4OEEN1ESsHf3fIZzeEQuboFW9cMSbsRllLwQohRJWVrJRdddBFKqZhfQojhkVLwQoixQhaRhRilFrhymO/MlsqqQohRTQIRIUaxeEvBCyFEppJtLEIIIYRIGwlEhBBCCJE2EogIIYQQGWLbtm1omsbmzZsz8nypIDkiQgghRIaYMWMGjY2NcRcOHQskEBFCCDFqGEqN6p1iwWAQm83W7+MWiyXjin4GAoFoJ+FUkKUZIYQQo8L7XjfLmrayYu82bm/eyYq921jWtJX3ve6UvN7q1aspKSnBMIwe93/1q1/lwgsvBOCvf/0rCxcuxOl0MmfOHG655RZCoVD0WE3TWLVqFWeddRYTJkzg5z//Oa2trVxwwQVMnjwZl8vF3Llzefjhh4HYSykffPABX/nKV8jNzSUnJ4cTTjiBTz/9FADDMLj11luZPn06DoeD+fPn8+KLLw74vl5//XWOPvpoHA4HxcXFLF++vMeYFy9ezNVXX821115LYWEhp5xyyrA+x8FIICKEECLjve91c3fLZ2wNeHFpOvkWKy5NZ2vAx90tn6UkGPnWt75Fc3Mzr776avS+1tZW1q1bxwUXXMC6dev49re/zfe//30+/PBDVq9ezZo1a/jFL37R4zw33XQTZ511Fv/617+4+OKLufHGG/nwww954YUX2LJlC/fff3+/SzENDQ188YtfxOl0Ul1dzaZNm7j44oujgcM999zDXXfdxZ133kltbS1Llizhq1/9Kh9//HG/5/vyl7/MUUcdxT//+U/uv/9+fvvb3/Lzn/+8x3G/+93vsFqtvPnmm6xevXo4H+PgktcQOPkSaSMshBAicw3UMn4wYcNQ1+3+RH19x7/UpQ0fqct21UW/Lm34SH19x7/Vdbs/UWHDSPq4v/rVr6qLL744+v3q1avV1KlTVSgUUieccIL65S9/2eP43//+96q4uDj6PaB+8IMf9DjmzDPPVN/73vdivl59fb0CVE1NjVJKqeuvv16VlpaqQCAQ8/hp06apX/ziFz3uO+qoo9SVV14Z83w//elPVVlZmTK6fVa//vWvVXZ2tgqHw0oppU488UQ1f/78/j6SqIF+polcv2VGRGAYik2bdrFu3Sds2rQLw5Ay/EKIzPFxwMvOoJ9c3dqjySOYSx+5uoWdQT8fB7xJf+0LLriAp556Cr/fD8Cjjz7Keeedh8ViYdOmTdx6661kZ2dHvy699FIaGxvxeDzRcxx55JE9znnFFVfwxBNPMH/+fJYtW8bGjRv7ff3NmzdzwgknxMwraW9vZ9euXRx//PE97j/++OPZsmVLzPNt2bKFY489tsfnePzxx9PR0cFnn33W75hTSZJVx7nq6nqqqjZQV9dMIGBgt+uUlRWyfPkiKitL0z08IYSgzQgRUgqbHjsp1aZpuA1FmxGK+fhwnHnmmRiGwfPPP89RRx3FG2+8wd133w2Y+Rm33HILZ599dp/nOZ3O6H9PmDChx2Onn34627dv5/nnn+fll1/m5JNP5qqrruLOO+/scx6Xa/Au2r2DM6VUn/sGekx19YDrfn/vMaeSzIiMY9XV9Sxdupba2j1kZ9spLs4mO9tObe0eli5dS3V1fbqHKIQQ5OlWrF0dpmMJKoVV08jTk/+3tcvl4uyzz+bRRx/l8ccfZ968eSxcuBCABQsWUFdXx8EHH9znS9cHvrxOnjyZiy66iD/84Q/8z//8Dw888EDM48rLy3njjTcIBoN9HsvNzWXatGls2LChx/0bN27k0EMPjXm+z33uc2zcuLFHA9qNGzeSk5NDSUnJgGNOFQlExinDUFRVbcDt9lNSkoPLZUPXNVwuGyUlObjdfqqqNsgyjRAi7ebaXcywOWg3wn06uCulaDfCzLA5mGsffPZgKC644AKef/55HnroIb797W9H71+xYgWPPPIIN998Mx988AFbtmzhySef5Gc/+9mA51uxYgXPPfccn3zyCR988AFr167tN3C4+uqraW9v57zzzuO9997j448/5ve//z11dXUA/PjHP+b222/nySefpK6ujuXLl7N582b+3//7fzHPd+WVV7Jz506uueYaPvroI5577jluuukmrr322kGDp1SRQGScqqlppK6umYICV8w11/x8F3V1zdTUNKZphEIIYdI1jfNzp5Cl6zSHQ/gNA0Mp/IZBczhElq5zfu6UlNUTqaysJD8/n7q6Os4///zo/UuWLGHt2rWsX7+eo446ii984QvcfffdzJo1a8Dz2e12rr/+esrLy/niF7+IxWLhiSeeiHlsQUEB1dXVdHR0cOKJJ7Jw4UIefPDBaM7I97//fa677jquu+46Dj/8cF588UX+8pe/MHfu3JjnKykp4W9/+xvvvPMORxxxBJdffjmXXHLJoMFTKmmqd3iZQdrb28nLy6OtrY3c3Nx0D2dMWbfuEy666DmKi7PRY6y7GoaisbGDNWvOYsmSg9MwQiHEWOLz+aivr6e0tLRH/kQi3ve6eay9iZ1BP6Gu5ZgZNgfn505hgSsnySMWgxnoZ5rI9VuSVcepwsIs7HYdvz+Ey9U3G9vnC2G36xQWSot5IURmWODKYb4ze1RXVhV9ydLMOFVRUUxZWSH79nljrrm2tHgpKyukoqI4TSMUQoi+dE2jzJHF0a5cyhxZEoSMARKIjFO6rrF8+SJychw0NLjxeIIYhsLjCdLQ4CY318Hy5YtiLtsIIYQQySKByDhWWVnK6tVnUF5eRGdngMbGDjo7A5SXF7Fq1RlSR0QIIUTKSY7IOFdZWcrixbOpqWmkudlDYWEWFRXFMhMihBBiREggItB1jYULp6V7GEIIIcYhWZoRQgghRNpIICKEEEKItJFARAghhBBpI4GIEEIIMQQ333wz8+fPH/Z5XnvtNTRNY//+/XE/56KLLuJrX/vasF87E0iJdyGEECmXjBLvmaajowO/309BQcGwzhMIBGhpaaGoqKhP76/+tLW1oZRi4sSJw3rt4ZAS70IIIcYfZUBTDXibwVUIUypAS8/kfnZ2NtnZ2f0+HggEsNvtg57HbrczderUhF47Ly8voeMzmSzNCCGEGB12VMNTp8FzZ8MLF5m3T51m3p8Cq1evpqSkBMMwetz/1a9+lQsvvLDP0kxkuWTlypVMmzaNefPmAbBx40bmz5+P0+nkyCOP5Nlnn0XTNDZv3gz0XZpZs2YNEydOZN26dRx66KFkZ2dz2mmn0djY2Oe1IgzD4Pbbb+fggw/G4XAwc+ZMfvGLX0Qf/8lPfsK8efPIyspizpw53HjjjQSDweR+YEMkgYgQAkMp6vwe3vG2U+f3YGTuiq0Yr3ZUw/qlsLcWbNmQXWze7q01709BMPKtb32L5uZmXn311eh9ra2trFu3jgsuuCDmc1555RW2bNnC+vXrWbt2LW63mzPPPJPDDz+c999/n9tuu42f/OQng762x+Phzjvv5Pe//z1///vf2bFjBz/60Y/6Pf7666/n9ttv58Ybb+TDDz/kscceo6ioKPp4Tk4Oa9as4cMPP+See+7hwQcf5Fe/+lUCn0bqyNKMEOOctFYXGU8Z8E4VBNyQXQKRPAqbC6wl0NFgPj5jcVKXafLz8znttNN47LHHOPnkkwH405/+RH5+PieffDIbN27s85wJEybwm9/8Jroks2rVKjRN48EHH8TpdPK5z32OhoYGLr300gFfOxgMsmrVKg466CAArr76am699daYx7rdbu655x7+7//+jwsvvBCAgw46iEWLFkWP+dnPfhb979mzZ3Pdddfx5JNPsmzZsgQ+kdSQGREhxrH3vW7ubvmMrQEvLk0n32LFpelsDfi4u+Uz3ve60z1EIcyckJY6cBYcCEIiNA2c+ebjTTVJf+kLLriAp556Cr/fD8Cjjz7Keeedh8ViiXn84Ycf3iMvpK6ujvLy8h7JnEcfffSgr5uVlRUNQgCKi4tpamqKeeyWLVvw+/3RYCmWP//5zyxatIipU6eSnZ3NjTfeyI4dOwYdx0iQQESIccpQisfam/AYYQotNhy6jq5pOHSdQosVj2HwWHuTLNOI9PM2QzgAVkfsx61OMALmcUl25plnYhgGzz//PDt37uSNN97g29/+dr/HT5gwocf3Sqk+O2Hi2axqs9l6fK9pWr/Pc7lcA57r7bff5rzzzuP0009n7dq11NTUcMMNNxAIBAYdx0iQQESIcerjgJedQT+5urXPL0pN08jVLewM+vk44E3TCIXo4ioEix1C/tiPh3yg283jkv3SLhdnn302jz76KI8//jjz5s1j4cKFcT//kEMOoba2NjqjAvDee+8ldYxz587F5XLxyiuvxHz8zTffZNasWdxwww0ceeSRzJ07l+3btyd1DMMhgYgQ41SbESKkFLZ+6hbYNI2QUrQZoREemRC9TKmA/DLw7YPeswJKga/FfHxKRUpe/oILLuD555/noYceGnA2JJbzzz8fwzC47LLL2LJlC+vWrePOO+8EiLtmyGCcTic/+clPWLZsGY888giffvopb7/9Nr/97W8BOPjgg9mxYwdPPPEEn376Kf/7v//LM888k5TXTgYJRIQYp/J0K1ZNI9jPdG+wK3E1T5ecdpFmmg5HLwd7jpmYGvSYCaxBj/m9Pdd8PEX1RCorK8nPz6euro7zzz8/oefm5uby17/+lc2bNzN//nxuuOEGVqxYAZDUwm433ngj1113HStWrODQQw/l3HPPjeaUnHXWWfzwhz/k6quvZv78+WzcuJEbb7wxaa89XFJZVYhxylCKZU1b2RrwUWjpuTyjlKI5HGKO3ckdU+agJ+kvNzF+JaWy6o5qc3dMS52ZE6LbzZmQo5fDzMrkDjiFHn30Ub73ve/R1tY2aH5HJpPKqkKIYdE1jfNzp3B3y2c0h0Pk6hZsXTMk7UaYLF3n/NwpEoSIzDGz0tyimyGVVeP1yCOPMGfOHEpKSvjnP//JT37yE84555xRHYQkkwQiQoxjC1w5XJs/PVpHxG2YyzFz7E6pIyIyk6ZDUfzJoplg9+7drFixgt27d1NcXMy3vvWtHlVPxztZmhFCYCjFxwEvbUaIPN3KXLtLZkJEUo3FpnfjnSzNCCGSRtc0yhxZ6R6GEGIcyuyFNSGEEEKMaRKICCGEGDEZnA0gEpSsn6UszQghhEg5m82Gpmns3buXyZMnJ62Yl0gPpRR79+5F07Q+5egTJYGIEEKIlLNYLEyfPp3PPvuMbdu2pXs4Igk0TWP69On9NgCMlwQiQgghRkR2djZz584lGAymeygiCWw227CDEJBARAghxAiyWCxJuXiJsUOSVYUQQgiRNhKICCGEECJtJBARQgghRNpkdI5IZI9ye3t7mkcihBBCiHhFrtvx1BrJ6EDE7XYDMGPGjDSPRAghhBCJcrvd5OXlDXhMRje9MwyDXbt2kZOT06P4TXt7OzNmzGDnzp3SDG8A8jnFRz6n+MjnFB/5nOInn1V8RuPnpJTC7XYzbdo0dH3gLJCMnhHRdZ3p06f3+3hubu6o+aGkk3xO8ZHPKT7yOcVHPqf4yWcVn9H2OQ02ExIhyapCCCGESBsJRIQQQgiRNqMyEHE4HNx00004HI50DyWjyecUH/mc4iOfU3zkc4qffFbxGeufU0YnqwohhBBibBuVMyJCCCGEGBskEBFCCCFE2kggIoQQQoi0kUBECCGEEGkjgYgQQggh0mbUByJf/epXmTlzJk6nk+LiYr7zne+wa9eudA8ro2zbto1LLrmE0tJSXC4XBx10EDfddBOBQCDdQ8s4v/jFLzjuuOPIyspi4sSJ6R5ORrnvvvsoLS3F6XSycOFC3njjjXQPKeP8/e9/58wzz2TatGlomsazzz6b7iFlnJUrV3LUUUeRk5PDlClT+NrXvkZdXV26h5Vx7r//fsrLy6PVVI899lheeOGFdA8rJUZ9IHLSSSfxxz/+kbq6Op566ik+/fRTvvnNb6Z7WBnlo48+wjAMVq9ezQcffMCvfvUrVq1axU9/+tN0Dy3jBAIBvvWtb3HFFVekeygZ5cknn+QHP/gBN9xwAzU1NZxwwgmcfvrp7NixI91DyyidnZ0cccQR/N///V+6h5KxXn/9da666irefvtt1q9fTygU4tRTT6WzszPdQ8so06dPp6qqivfee4/33nuPyspKzjrrLD744IN0Dy351Bjz3HPPKU3TVCAQSPdQMtodd9yhSktL0z2MjPXwww+rvLy8dA8jYxx99NHq8ssv73HfIYccopYvX56mEWU+QD3zzDPpHkbGa2pqUoB6/fXX0z2UjDdp0iT1m9/8Jt3DSLpRPyPSXUtLC48++ijHHXccNpst3cPJaG1tbeTn56d7GGIUCAQCbNq0iVNPPbXH/aeeeiobN25M06jEWNHW1gYgv48GEA6HeeKJJ+js7OTYY49N93CSbkwEIj/5yU+YMGECBQUF7Nixg+eeey7dQ8pon376Kffeey+XX355uociRoHm5mbC4TBFRUU97i8qKmL37t1pGpUYC5RSXHvttSxatIjDDjss3cPJOP/617/Izs7G4XBw+eWX88wzz/C5z30u3cNKuowMRG6++WY0TRvw67333ose/+Mf/5iamhpeeuklLBYL3/3ud1HjoHJ9op8TwK5duzjttNP41re+xX//93+naeQjayifk+hL07Qe3yul+twnRCKuvvpqamtrefzxx9M9lIxUVlbG5s2befvtt7niiiu48MIL+fDDD9M9rKSzpnsAsVx99dWcd955Ax4ze/bs6H8XFhZSWFjIvHnzOPTQQ5kxYwZvv/32mJzC6i7Rz2nXrl2cdNJJHHvssTzwwAMpHl3mSPRzEj0VFhZisVj6zH40NTX1mSURIl7XXHMNf/nLX/j73//O9OnT0z2cjGS32zn44IMBOPLII3n33Xe55557WL16dZpHllwZGYhEAouhiMyE+P3+ZA4pIyXyOTU0NHDSSSexcOFCHn74YXQ9IyfDUmI4/56E+ctw4cKFrF+/nq9//evR+9evX89ZZ52VxpGJ0UgpxTXXXMMzzzzDa6+9RmlpabqHNGoopcbktS0jA5F4vfPOO7zzzjssWrSISZMmsXXrVlasWMFBBx005mdDErFr1y4WL17MzJkzufPOO9m7d2/0salTp6ZxZJlnx44dtLS0sGPHDsLhMJs3bwbg4IMPJjs7O72DS6Nrr72W73znOxx55JHRGbUdO3ZInlEvHR0dfPLJJ9Hv6+vr2bx5M/n5+cycOTONI8scV111FY899hjPPfccOTk50Zm2vLw8XC5XmkeXOX76059y+umnM2PGDNxuN0888QSvvfYaL774YrqHlnzp3LIzXLW1teqkk05S+fn5yuFwqNmzZ6vLL79cffbZZ+keWkZ5+OGHFRDzS/R04YUXxvycXn311XQPLe1+/etfq1mzZim73a4WLFgg2y1jePXVV2P++7nwwgvTPbSM0d/voocffjjdQ8soF198cfT/t8mTJ6uTTz5ZvfTSS+keVkpoSo2DrE4hhBBCZKTxkygghBBCiIwjgYgQQggh0kYCESGEEEKkjQQiQgghhEgbCUSEEEIIkTYSiAghhBAibSQQEUIIIUTaSCAihBBCiLSRQEQIIYQQaSOBiBBCCCHSRgIRIYQQQqTN/w9SawfvbODS/wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "colors = ['navy', 'turquoise', 'darkorange']\n", "target_names = ['setosa','versicolor','virginica']\n", "for color, i, target_name in zip(colors, [0, 1, 2], target_names):\n", " plt.scatter(X_pca[y == i, 0], X_pca[y == i, 1], color=color, alpha=.8, label=target_name)\n", "plt.legend(loc='best', shadow=False, scatterpoints=1)\n", "plt.title('PCA of IRIS dataset')\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.16" } }, "nbformat": 4, "nbformat_minor": 5 }